
Parte I

Considere a função de domínio IR_0^+ , definida por $f(x) = \sqrt{x} + 2$ e a função afim g, representada graficamente na figura a baixo.

Indique o valor de f(gof)(4).

A. 5

C. 2

D. 1

De uma função f, de domínio [-2; 1], sabe-se que o contradomínio é [-3; 2]. Qual é o contradomínio da função g definida por g(x) = 2|f(x) - 1| + 1?

2

1

D. [0; 6]

C.[1:7]

B. [4; 6]

A. [5; 7]

Na figura está uma representação gráfica da função f definida no intervalo $[0, \pi]$, por

$$f(x) = 2sen(2x) + 2$$

3

Sabendo que $f(k) = f(\frac{3\pi}{5})$, qual é o valor de k?

C. $\frac{7\pi}{10}$ D. $\frac{4\pi}{5}$ A. $\frac{17\pi}{20}$

Seja z um número complexo de argumento $\frac{\pi}{8}$. Qual poderá ser um argumento do simétrico de z?.

 $D. \frac{15\pi}{8} \qquad C. -\frac{7\pi}{8}$

A. 1711

Sendo $a - b = \frac{\pi}{3}$, o valor de $y = (sena + cosb)^2 + (senb - cosa)^2$ é:

5

4

C. $2 - \sqrt{3}$ D. $2 + \sqrt{3}$

A. $1 - \sqrt{3}$

B. √3

	Sabe-se que $(1 - \sqrt{3})^5 = a + b\sqrt{3}$ com $a, b \in \mathbb{Z}$. Os valores de a e b são:					
	D. 76 e 44	76 e -44	B 76 e 44	A. 76 e −26		
	Os números de tele primeiros iguais a 25 todos diferentes, pode	3 (por ordem). Qu	a região têm nove alga- nantos números de telefo- gião.	rismos, sendo os trê ne, com os algarismos		
	C. 10 ⁶	$A. A_6^7$	D. 7 ⁶	$B.A_6^{10}$		
В	De uma linha do triângulo de Pascal, sabe-se que o produto do segundo elemento pelo penúltimo é igual a 169. Qual é o maior elemento da linha seguinte?					
	D. 1287	C. 1716	B.3003	A. 3432		
9	Se $a_n = \frac{(n+1)!-n!}{n^2[(n-1)!+n]}$ $D. \frac{1997}{1996}$	-	A. 1998!	В. 1997		
10	Sabendo-se que o desenvolvimento $\left(2x^2 - \frac{\sqrt{3}}{2}i\right)^m$, possui 7 termos, o terceiro termo do desenvolvimento é:					
	$B180x^8$	$A.180x^7$	$D.165x^6$	$C.203x^9$		
	Se A(10.0) e B(-	5, y) são pontos de	uma elipse cujos focos são	$F_1(-8,0) \in F_2(8,0)$		
	o perímetro do triângulo BF_1F_2 é:					
11	D. 24	C.36	B.40	A. 60		
_	A distância focal e	a excentricidade d	a elipse com centro na ori	gem e que passa pelo		
12	pontos (1,0) e (0,-	-Z) sao, respectivui				
	$D.\sqrt{3}$ e $\frac{1}{2}$	$C.\frac{1}{2} e \sqrt{3}$	$A.\frac{\sqrt{3}}{2}e^{\frac{1}{2}}$	$B.2\sqrt{3} e^{\frac{\sqrt{3}}{2}}$		
	Sejam f e g as funções, de domínio IR , definidas por $f(x) = e^x$ e $g(x) = e^{2x+3}$, o gráfico de f e de g intersectam-se num ponto. Qual é a ordenada desse ponto?					
13	$D. \frac{\sqrt{2}}{30}$	$C.\frac{1}{e^3}$	$B.\frac{1}{e^4}$	$A.\frac{\sqrt{3}}{24}$		

14	A sequência de números reais e positivos dado por $(x-2, \sqrt{x^2+11}, 2x+2,)$ é un progressão geométrica, cujo o sétimo termo vale:					
	A. 484	B. 252	C.96	D. 192		
15	Em um parque ecológico, há cinco anos, a população de onças pintadas era de 325. Hoje é de 481. Então a taxa média anual de crescimento da população de onças, se elas só se reproduzem uma vez por ano é de (dado 1,48 = 1,082).					
	D. 6,7%	C. 5,8%	e (dado 1,48 $^{\circ}$ = 1,082). B. 7,6%	A. 8,2%		
	A solução da inequ	ação trigonométric	a $2\cos(x) + 1 > 0, x \in [0, \infty]$	2π] é:		
16	$D.\left[0,\frac{2\pi}{3}\right]$	$C.[0,2\pi]$	$A.\left[0,\frac{2\pi}{3}\right[\cup\left]\frac{4\pi}{3},2\pi\right]$	$B.\left]\frac{4\pi}{3},2\pi\right]$		
17	Seja f a função, de domínio $\left] -\frac{\pi}{8}; \frac{\pi}{8} \right[$, definida por $f(x) = tg(4x)$. Qual é o declive d recta tangente ao gráfico da função f no ponto de abcissa $-\frac{\pi}{16}$?.					
	A. 2	B.8	C4	D. 4		
8	Considere a sucessão (u_n) de termo geral: $u_n = 1 + cos\left(\frac{n\pi}{4}\right)$. Indique qual das afirmações seguintes é verdadeira. D. (u_n) é crescente A. (u_n) é Infinitamente grande					
	$CB.(u_n)$ é dec	crescente	$B.(u_n)$ é limitada			
19	Na figura, ABCD é quadrado é 1m², en	um quadrado e CM tão a área de CMN	N é um triângulo equilátero é, em m^2 :	. Se a área do		
	\	C 2./5	2 01-			
	$\frac{\sqrt{3}}{3}$	$C. 2\sqrt{3}$ $A. \frac{\sqrt{3}}{4}$	-3 D.1 $ B.\frac{3}{6}$			
20	Dado um número positivo x , sabe-se que $\log_2 x = e$. O valor de $\ln x$ é:					
	D.e	C.2	B. e. ln 2	A. 2º		
	Dois ciclistas correr um do outro de 5m.	am sobre uma pista Sabendo sa	circular lado a lado, mante aio da pista para o ciclista o	ndo uma distância		

21	circuito é de 200m, então a diferença, em metro, da distância percorrida pelos dois ciclistas após 5 voltas é:					
	Α. 50π	$B.40\pi$	$C.20\pi$	$D.10\pi$		
22	Em um triângulo rectângulo a hipotenusa vale $h \in o$ raio do círculo inscrito e r . A razão entre a área do círculo e a área do triângulo e :					
	$D. \frac{\pi r}{h+2r}$	$C.\frac{\pi r}{h+r}$	$B.\frac{\pi r}{2h+r}$	$A.\frac{\pi r^2}{h^2+r^2}$		
:3	A distância entre as rectas $x - 2y + 3 = 0$ e $2x - 4y + k = 0$ é $\frac{\sqrt{5}}{5}$ unidades de comprimentos. O produto dos valores de k é igual a:					
	A. 12	B32	C.35	D.32		
	As coordenadas do	centro do círculo da	equação $x^2 + y^2 - 4x + 6$	y - 3 = 0 são:		
24	C. c(-2; 3)	D.c(3;-2)	A. c(1; 0)	B. $c(2; -3)$		
25	Qualitas acssas rec	ras nao passam pero c	centro do cubo?.			
25	- T					
25	D.24	C.26	B. 20	A. 28		
25	D. 24	C. 26		duas dessas bolas e		
25	D. 24 Um saco tem 10 be multiplicam-se os rigual a 12?. C. $\frac{1}{45}$	C. 26 colas, numeradas de 1 respectivos números. $D. \frac{2}{45}$	B. 20 a 10. Extraem-se ao acaso, Qual é a probabilidade de o	duas dessas bolas e produto obtido ser $B.\frac{4}{45}$		
	D. 24 Um saco tem 10 be multiplicam-se os rigual a 12?. C. $\frac{1}{45}$	C. 26 clas, numeradas de 1 respectivos números. $D. \frac{2}{45}$ domínio $]-\pi,\pi[$ definition de finition de finiti	B. 20 a 10. Extraem-se ao acaso, Qual é a probabilidade de o $A. \frac{1}{15}$ inida por: $f(x) = x + ta = 0$	duas dessas bolas e produto obtido ser $B.\frac{4}{45}$		
	D. 24 Um saco tem 10 be multiplicam-se os rigual a 12?. C. $\frac{1}{45}$ Seja f a função de sucessão de númer D. 0	C. 26 Colas, numeradas de 1 respectivos números. $D. \frac{2}{45}$ domínio $]-\pi,\pi[$ definos reais (x_n) tal que $C.1$	B. 20 a 10. Extraem-se ao acaso, Qual é a probabilidade de o	duas dessas bolas e produto obtido ser $B.\frac{4}{45}$. Considere a de $\lim_{n\to\infty} f(x_n)$?.		

28	$D. a_n = \log_3 2^n$	$C.b_n = \log_3\left(\frac{1}{2}\right)^n$	$B.c_n=e^{3n}$	$A.d_n=e^{-\frac{n}{3}}$	
29	A soma de todas as raízes da equação $2 * 2^{sen(x)} = \sqrt{2}$, no intervalo $[0, 2\pi]$, é:				
	Α. 4π	Β. 3π	$C.2\pi$	$D.\pi$	
30	O número real m que satisfaz a equação $\frac{m+1}{m-2} = \cos 3015^{\circ}$ é:				
30		C. $3\sqrt{2} - 4$	$A.3-4\sqrt{2}$	$B.4\sqrt{2}+3$	
			, and a second	example of the	

Parte II

31. Determine o seguinte limite:
$$\lim_{n\to\infty} \left(\sqrt[3]{\frac{2n-2}{2n+1}}\right)^{2n}$$
. (2.5v)

32. Em que ponto a recta tangente á parábola $y=x^2-7x+3$ é paralela a recta $5x+y-3=0$?. (2.5v)

Fim!