	A . 40km/h	B . 60km/h	C. 80km/h	$\mathbf{D}.120km/h$		
2.	Quando se duplica a pressão a que está submetido uma certa massa de gás, sendo constante a temperatura, o volume					
	A. reduz-se a metade	B . não se altera	C. diminui	D. aumenta		
	 O volume ocupado por um gás, a pressão constante, é A. Directamente proporcional a temperatura em graus Celsius. B. Directamente proporcional a variação da temperatura. C. Directamente proporcional a temperatura em graus Kelvin. D. Inversamente proporcional a temperatura em graus Kelvin. Um macaco hidráulico com a potência útil de 5kw, levanta um carro de massa 1,5.10³kg a 					
	altura de 2,0 m, com uma força de intensidade igual à do peso do carro. O intervalo de tempo que se gasta nesta tarefa é: A. 0,06 s B. 0,6 s C. 6 s D. 60 s					
5.	Durante o mesmo inter	valo de tempo do	is pêndulos gravític	cos simples realizam 10 e 6 $\Delta l = 16cm$), os comprimentos = 32cm		
6.	Uma pedra é lançada verticalmente para cima com a $v_o = 80m/s$. O tempo que ela leva para atingir o topo é:					
	A. 5s B.	8 <i>s</i>	C. 10 <i>s</i>	D. 18 s		

1. Um automóvel durante a primeira metade de tempo que estava em movimento levou a

velocidade média é de:

velocidade de 80km/h e durante a segunda metade levou a velocidade de 40km/h. A sua

7.	Em quantas vezes varia a longitude de uma onda sonora que se propaga do ar para a água,				
	sabendo que a velocidade do som na água é $v_1 = 143 m/s$ e a velocidade do som no ar				
	$v_2 = 340 m/s$?				

A. n = 0.40

B. n = 0.41

C. n = 0.42 **D.** n = 0.43

8. A energia potencial eléctrica armazenada numa mola de constante elástica k = 400 N/mquando ela é distendida 30 m é:

A. 800 *J*

B. 300 *J*

C. 200 *J*

D. 18 *J*

9. A pressão exercida em um ponto situado 4m a baixo da superfície da água de uma piscina, **admitido** $g = 10 \, m \, / \, s^2$, $\delta_{agua} = 10^3 \, kg \, / \, m^2$ e a $P_{agua} = 10^5 \, N \, / \, m^2$ é:

A. $40.10^3 N/m^2$ **B.** $140.10^3 N/m^2$ **C.** $15.10^3 N/m^2$ **D.** $1,458.10^3 N/m^2$

10. Na reacção $Es_{99}^{257} + He_2^4 \rightarrow y + 2n_0^1$. O conjunto de número atómico e número de massa que corresponde a y, é:

A. Y_{99}^{257} **B.** Y_{100}^{256} **C.** Y_{100}^{255} **D.** Y_{101}^{259}

11. Em que local provável do globo terrestre se situa um pêndulo de 150cm e realiza 100 oscilações em 246 segundos?

A. Regiões distantes do equador.

B. Regiões próximas do equador.

C. Regiões polares do equador.

D. Regiões próximas dos trópicos.

12. Um corpo de massa 100 g oscila numa mola com uma frequência de 2Hz. A constante elástica da mola será:

A. K = 15,17N/m

B. K = 15,07N/m **C.** K = 15,27N/m

D. K = 15.7N/m

O comprimen	to da onda máxima	da radiação emitida	pelo sol é de $5.10^{-7} m$. E a			
temperatura do sol, em K , será:						
A. 300	B. 3000	C. 6000	D. 30000			
A equação da	velocidade em função	do tempo para o movir	nento de uma bicicleta, é dada			
pela expressão $v(t) = 5 - 4t$, em unidades do SI. A aceleração do movimento é de						
A. $-4m/s^2$	B. $-5m/s^2$	C. $4m/s^2$	D. $5m/s^2$			
Durante a tran	sição de um electrão (de um nível para outro e	em um átomo, a frequência dos			
fotões emitidos	é de 4.10 ¹⁵ Hz (consid	dere $h = 6,625.10^{-34} Js$).	A energia que liberta-se, em J ,			
é de:						
A. 6,625.10 ⁻¹⁹	B. 13,25.10 ⁻¹⁹	C. 19,875.10 ⁻¹⁹	D. 26,5.10 ⁻¹⁹			
O Sódio -24 so	ofre desintegração gar	na e o seu período de se	mi-desintegração é de 15 <i>horas</i> .			
Uma amostra deste isótopo tem uma actividade de 240 Bq. A actividade após 60 horas é de:						
A. 15 <i>Bq</i>	B. 30 <i>Bq</i>	C. 60 Bq	D. 120 <i>Bq</i>			
O velocímetro de um automóvel indica, em cada momento a						
A. aceleração i	nstantânea	C. velocidade média	ı			
B. velocidade angular		D. velocidade instantânea				
Um raio de luz incide num espelho plano, formando com sua superfície um ângulo de 60° .						
Qual é o ângulo de reflexão correspondente?						
A. 20 ⁰	B. 40 ⁰	C. 60°	D. 80°			
Um ferro eléc	trico consome uma po	otência de 1100 W quan	do ligado a uma resistência de			
11Ω . Qual é o valor da tensão?						
A. 105	B. 110	C. 120	D. 220			
	temperatura de A. 300 A equação da pela expressão A. $-4m/s^2$ Durante a tranfotões emitidos é de: A. 6,625.10 ⁻¹⁹ O Sódio -24 so Uma amostra o A. 15 Bq O velocímetro A. aceleração i B. velocidade a Um raio de luz Qual é o ângula. 20° Um ferro eléc	temperatura do sol, em K , será: A. 300 B. 3000 A equação da velocidade em função pela expressão $v(t) = 5 - 4t$, em unida A. $-4m/s^2$ B. $-5m/s^2$ Durante a transição de um electrão of fotões emitidos é de 4.10^{15} Hz (considé de: A. $6,625.10^{-19}$ B. $13,25.10^{-19}$ O Sódio -24 sofre desintegração gar Uma amostra deste isótopo tem uma A. $15 Bq$ B. $30 Bq$ O velocímetro de um automóvel indi A. aceleração instantânea B. velocidade angular Um raio de luz incide num espelho pual é o ângulo de reflexão correspo A. 20° B. 40° Um ferro eléctrico consome uma pou 11Ω . Qual é o valor da tensão?	A. 300 B. 3000 C. 6000 A equação da velocidade em função do tempo para o movim pela expressão $v(t) = 5 - 4t$, em unidades do SI. A aceleração A. $-4m/s^2$ B. $-5m/s^2$ C. $4m/s^2$ Durante a transição de um electrão de um nível para outro e fotões emitidos é de 4.10^{15} Hz (considere $h = 6,625.10^{-34}$ Js). 200 E. 200 B. 200 C. 200 C. 200 B. 200 C. 200 C. 200 C. 200 C. 200 D. 200 C. 200 C. 200 D. 200 C. 200 D. 200 C. 200 D. 200 C. 200 D. 200 D. 200 C. 200 D. 200			

20. A equação do movimento de uma partícula é dada pela expressão: $x(t) = -4$						
	ınidades do SI. A velocidade da partícula é de:					
	A4	B. -2	C. 3	D. 4		
21.	Duas cargas po	ontuais $q_1 = 2$	μc e $q_2 = 8\mu c$, estão	fixos em dois pontos A e B		
respectivamente, distantes 3 cm entre si e localizadas no vácuo, a intensidade da						
	que se repeliu é:					
	-	B. 150 N	C. 160 N	D. 170 <i>N</i>		
	11011	2010017	C. 100 11	2017011		
22	a Jupter $(g = 26 m/s^2)$. O seu peso					
22.			r uma peura de 3 kg par	a Jupter $(g = 20 m/s)$. O seu peso		
	nesse planeta seria	a de:				
	A. 50 <i>N</i>	B. 500 <i>g</i>	C. 130 <i>N</i>	D. 5 N		
23.	Uma pedra lança	da verticalmei	nte para cima, atinge um	a altura h e volta para o ponto de		
	partida. Despreza	ndo o atrito, a	a velocidade mínima de l	ançamento pode ser calculada pela		
expressão:						
	<u> 1</u>	σ		$\sqrt{2h}$		
	A. $\sqrt{\frac{1}{2hg}}$	B. $\sqrt{\frac{s}{2h}}$	C. $\sqrt{2hg}$	D. $\sqrt{\frac{2h}{g}}$		
24	Um bloog de med	oima aujo vals	rma á da 10 lituas astá f	lutuando em água $(\delta_{H_2o} = 1g/cm^3)$,		
<i>2</i> 4.						
	com a metade do seu volume submerso, o empuxo que o bloco está recebendo é igual a:					
	A. 25 <i>N</i>	B. 50 <i>N</i>	C. 75 <i>N</i>	D. 100 <i>N</i>		
25.	Um corpo que seu processo de electrização perde electrões, encontra – se electricamente:					
	A. No estado neutr	0	C. Carro	egado positivamente		
	B. Carregado negat	tivamente	D. em :	nenhum dos casos		
26.	Duas cargas pont	tuais, uma de	5μc e outra de 10μc e	stão separadas no vácuo por uma		

distância de 5 mm entre si. A força de interacção eléctrica entre as cargas é:

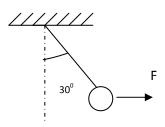
C. de 25*N*

B. Repulsiva

A. Atrativa

D. de 45*N*

- 27. Um fio de alumínio tem 200km de comprimento e $4cm^2$ de secção transversal. Sendo a resistividade de alumínio de $0.028\,\Omega mm^2/m$, a resistência do fio em Ohms é igual a:
 - **A.** 0,14


B. 1,4

C. 14

- **D.** 140
- 28. Nos extremos de um fio de alumínio de $10\,m$ de comprimento e $0.4\,mm^2$ de secção transversal, está aplicado uma tensão de $12\,V$. Sendo a resistividade do fio igual a $0.000002\,\Omega\,cm$, será percorrido por uma corrente de intensidade igual a:
 - **A.** 0,5 *A*
- **B.** 5 A

C. 24 *A*

- **D.** 12 A
- 29. Qual é potencial eléctrico em um ponto P, situado a 40 cm de uma carga eléctrica puntiforme de $8\mu C$?
 - **A.** $2.10^{-5} V$
- **B.** $1.8.10^{-5}V$
- **C.** $1,8.10^5 V$
- **D.** $1,8.10^8 V$
- 30. A figura representa uma esfera de 2 kg deslocada da sua posição de equilíbrio devido a acção de uma força F:

O valor da força F, em N, é de:

- **A**. $\frac{20}{3}$
- **B**. $40\sqrt{3}$
- C. $\frac{20\sqrt{3}}{3}$
- **D**. $\frac{40\sqrt{3}}{3}$