

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências

EXAME DE ADMISSÃO DE FÍSICA AO ETP

Ano: 2013

Nível de ingresso: 10º Classe ou Equivalente

Duração: 120 Minutos

Esta prova contém 40 perguntas com 4 alternativas de resposta, cada uma. Escolha a alternativa correcta e RISQUE a letra correspondente na sua folha de resposta.

Um autocarro animado de movimento uniforme necessita de 10 segundos para percorrer 50 m.
Quanto tempo, em segundos, necessitará para percorrer 600 m?

 (\mathbf{A}) 60

B 120

C 180

D 240

2. A posição de um móvel varia com o tempo segundo a tabela representada. Qual é, em m/s, a velocidade do móvel?

t(s)	0	2	6	7	10	12	V= 5
e(m)	0	10	30	35	50	60	30208:2

A 5

B 10

C 15

 (\mathbf{p}) 20

Qual é, em min, o tempo que um veículo movendo-se a 60 km/h deve gastar para cobrir um percurso 30 Km?

A 10

B 15

C 30

D 50

a- 38-10 .

4. A velocidade de um corpo em movimento rectilíneo varia com o tempo de acordo com a tabela representada. Qual é, em m/s², a aceleração com que se move esse corpo?

A) 1,5

B 2

C 2,5

D 5

			- '	35	
t(s)	0	10	20	30	
v(m/s)	10	25	40	55	-

Uma força constante F produz uma aceleração de 5 m/s² quando actua sobre um corpo de massa 10 Kg. Qual é, em Newton, a intensidade dessa força?

A 80

B 160

C 250

D 400

		2013 / 10ª Classe ou	Equivalente/ Exame a	le Admissão de Física ao ETP				
<i>(9.</i>				00N, constante, quando o seu	1			
	ponto de aplicaç	ão se desloca 20m na dire	ecção do deslocamento	?				
	A 20	B 200	C 500	D 8000				
7.	Um corpo é acele	erado a partir do renouso	e, anós percorrer 200	m, a velocidade do corpo é 3	0			
×	m/s. Qual é, em	m/s², a aceleração adqu	iirida pelo corpo?	m, a volcoladad ac cospe				
	A 0,25	B 2,25	C 3,5	D 4,5				
8.	Do alto de um ed	ifício deixa-se cair um t	ijolo que demora 6 se	gundos para atingir o solo. Se	endo a			
	aceleração da gra	vidade igual a 10 m/s². (Qual é, em metros, a	altura do edifício?				
	A 18	B 80	C 100	D 180				
9.	Um homem ao in	nclinar-se sobre a jane	la do vagão de uma	locomotiva que se move c	om			
	velocidade consta	nte, deixa cair seu relóg	gio. A trajectória de	relógio vista pelo homem	da			
I	locomotiva é (des	spreze a resistência do	ar)					
	A uma recta.							
	_		C um quarto de circunferência.					
•	3 uma parabola.		D uma hipérb	oole.				
) 1				
10. C	Observe a figura. (Qual é, em Newton, a :	força que é necessár	io exercer no ponto M pa	ra			
		de 2000 N? (desprez		,	·			
	- ,		,					
A	200							
$\widehat{\mathbf{B}}$	>500			M				
C	1000			\mathbf{M}				
	, ,							
D	2000			2000 N				
` '	. •	4,						
.) Qu	al é força que pro	oduz uma deformação	de 0,3 m numa mo	la de constante elástica 50) N/m?			
A	1,5	B 15	C 150	D 160				

Um motor de potência 30 KW acciona um veiculo durante 0,5 minutos . Qual é, em Joules, o

 \mathbf{C}

90000

12.

A 15

trabalho desenvolvido pelo motor?

B

1000

Cooned by ComCoone

D 900000

13.	~	al é, em joules, o velocidade cons	valor da ener	gia cinética	<i>ivale</i> de ui	<i>nte/ Exe</i> n corpo	de massa igual a 3Kg que se move
	A	15	B 30		C	150	D 1500

- Uma lente divergente tem distância focal de 40 cm. Um objecto de 10 cm de altura é colocado a 60 cm da lente." Quais são as características da imagem por ela produzida?
 - virtual, direita e maior.

virtual, direita e menor.

C virtual, invertida e igual.

virtual, invertida e maior.


Quando um raio de luz incide na superfície de separação de dois meios x e y, vinda do meio x para o meio y, ela sofre refracção. O índice de refracção do meio x é maior que o índice de refracção do meio y. Nestas condições, podemos afirmar que o raio refractado...

se afasta da normal.

se aproxima da normal.

 \boldsymbol{C} incide pela normal.

- não sofre desvio.
- 16. A figura mostra a formação geométrica da imagem de um objecto O. Como se chama o instrumento óptico utilizado?
 - A Um espelho plano
 - **B** Um espelho côncavo
 - C Um espelho convexo
 - Uma lente divergente

Uma mola de constante elástica K = 16N/m é esticada desde sua posição de equilíbrio até uma posição em que seu comprimento aumentou de 10 cm. Qual é a energia potencial elástica da mola esticada?

- 0,05 A
- B 0,08

- 0,16
- 0.80

Qual é, em calorias, a quantidade de calor necessário para elevar a temperatura de 500 g de cobre de calor específico igual a 0,093 $\frac{cal}{g^{\circ}C}$ de 20 °C a 60 °C?

- 800
- B 1302
- 1500 C
- 1860 D

2013 / 10ª Classe ou Equivalente/ Exan	me de Admissão de Física a	o ETF
--	----------------------------	-------

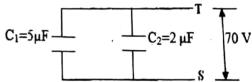
Para aquecer 800 g de uma substância de 0 °C a 60 °C foram necessários 4000 cal. Qual é, em $\frac{cal}{\varrho^{o}C}$, o calor específico da substância?

A 0,02

12

O que acontecerá se afastarmos uma da outra as placas de um capacitor plano com carga constante?

A capacidade aumenta.


- A diferença de potencial entre as placas aumenta.
- A diferença de potencial entre as placas diminui.
- A carga nas placas diminui.
- Dada a associação de capacitores $C_1\,\,e\,\,C_2,\,\,$ quais são, em coulombs, respectivamente, os valores de Q₁ e Q₂?

A 1,4.10⁻⁴ C e 3,5.10⁻⁴ C

B 14.10^6 C e 35.10^6 C

C 3,5.10⁻⁴ C e 1,4.10⁻⁴ C

D $1.5.10^6$ C e $3.5.10^6$ C

- 22. A matéria em seu estado normal não manifesta propriedades eléctricas. Isto significa que ela...
 - é constituída somente de neutrões.
 - possui mais electrões do que protões.
 - possui mais neutrões do que protões.
 - possui quantidades iguais de protões e electrões.

Duas cargas pontuais de 4.10^{-6} C e 8.10^{-6} C estão colocadas no vácuo ($K_0 = 9.10^9$ SI) a 3 cm de distância. Qual é, em Newton, a força de repulsão entre elas?

32 A

320

400

D 460

Qual é, em N/c, a intensidade do campo eléctrico criado por uma carga eléctrica pontual, fixa, de 8 μC em um ponto P, no vácuo, localizado a 20 cm da carga?

 36.10^4 A

B 45.10^4

 $\mathbf{C} \quad 1,8.10^5$

18.10⁵ D

2013 / 10° Classe ou Equiv	ilente/ Exame de Admissão de Física ao ET	P
estar to Chasse ou Equiv	ilente/ Exame de Admissão de Física ao ETI	P

Duas esferas metálicas, neutras, muito leves, estão penduradas por fios perfeitamente isolantes, em um ambiente sêco, conforme se mostra na figura anexa. Uma barra metálica, positivamente carregada, é encostada em uma das esferas e depois afastada. Após o afastamento da barra, qual deve ser a posição das esferas ?

Qual é. Em volt, o potencial eléctrico em um ponto P, no vácuo, situado a 10 cm de uma carga eléctrica pontual de 5 µc?

9.10⁵

B 45.10^5 **C** 27.10^4 **D** 45.10^4

Um tanque contendo 5000 litros de água, tem 2 metros de comprimento, 1 metro de largura e 2,5 m de altura. Sendo g = 10 m/s² e a densidade da água 1000 Kg/m³. Qual é a pressão hidrostática, em N/m², exercida pela água, no fundo do tanque?

A 2.5×10^{1}

B 5.0×10^3 **C** 2.5×10^4 **D** 5.0×10^4

O gráfico que representa a variação da pressão de um liquido com a profundidade, é 28. uma...

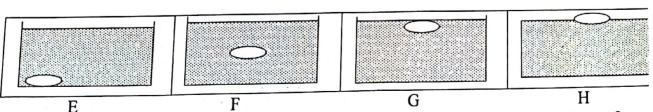
circunferência

B hipérbole

C parábola

D recta

Numa secção transversal de um fio condutor passa uma carga de 10 C a cada 2 s. Qual é em 29. ampéres, a intensidade da corrente eléctrica neste fio?

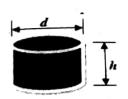

A 0,5

1 В

C 1,5

2,0 D

Um ovo colocado num recipiente com água vai até o fundo, onde fica apoiado, conforme a 30. figura. Adicionando-se sal em várias concentrações, ele assume as posições indicadas nas outras figuras F, G e H.


Qual é a figura que indica a situação em que o empuxo é menor do que o peso do ovo?

Ε

F B

G C

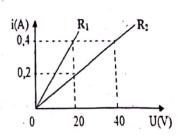
D H 31. Na figura ao lado está representado um recipiente cilíndrico, cujo diâmetro da base é d, contendo um líquido de densidade ρ até uma altura h. Variando-se apenas a medida de uma dessas grandezas de cada vez, como podemos aumentar a pressão hidrostática exercida pelo líquido, no fundo do recipiente cilíndrico?

- 32. A corrente eléctrica nos condutores metálicos é constituída de...
 - A electrões livres no sentido convencional.
 - B cargas positivas no sentido convencional.
 - C electrões livres no sentido oposto ao convencional.
 - D cargas positivas no sentido oposto ao convencional.
- 33. A respeito de fenômenos electromagnéticos, pode-se afirmar que :
 - A É possível isolar os pólos de um íman.
 - B' Magnetizar um corpo é fornecer electrões a um de seus pólos e protões ao outro.
 - C. Ao redor de qualquer carga eléctrica, existe um campo eléctrico e um campo magnético.
 - D Cargas eléctricas em movimento geram um campo magnético.
- 34. Considere as afirmações sobre ímanes:
 - I.Em contacto com um íman, o ferro macio transforma-se em íman temporário.
 - II. Se um iman é quebrado, cada pedaço se constitui num novo iman com pólos norte e sul.
 - III. Pólos magnéticos de mesmo nome se atraem e de nomes diferentes se repelem.

Está correcto SOMENTE o que se afirma em:

A lell B II C III D I

35. A partir da janela de um apartamento, abandona-se uma moeda, a qual toca o solo ao fim de 5 segundos. A que altura acima do solo acha-se a janela? Considere $g = 9.8 \text{ m/s}^2$.


A 24,5 **B** 122,5 **C** 125 **D** 245

36. O princípio da acção reacção(a 3ª lei de Newton) se refere a forças de mesma direcção...

- A mesmo sentido, mesmo módulo e que se aplicam no mesmo corpo.
- B sentidos opostos, mesmo módulo e que se aplicam no mesmo corpo.
- C sentidos opostos, mesmo módulo e que se aplicam em corpos diferentes.
- D mesmo sentido, mesmo módulo e que se anlicam em cornos diferentes

2013 / 10ª Classe ou Equivalente/ Exame de Admissão de Física ao ETP

A figura representa a variação da corrente eléctrica i, em função da diferença de potencial U, aplicada aos extremos de dois resistores, R₁ e R₂ Sobre estes resitores formulam-se as seguintes afirmações: I. A resistência de cada um dos resistores é constante, isto é, os resistores são óhmicos.

II.O resistor R₁ tem resistência maior que o resistor R₂.

III. Ao ser aplicada uma diferença de potencial de 80 V aos extremos de R2, nele passará uma corrente de 0,8 A.

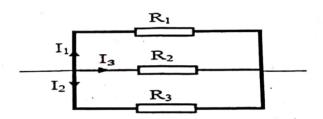
Quais as conclusões estão correctas?

A apenas I

B apenas II

C I e III

D II e III


Na associação da figura, chamemos V₁, V₂ e V₃ as diferenças de potencial aplicadas, 38. respectivamente, a R_1 , R_2 e R_3 . Supondo $R_1 > R_2 > R_3$, podemos afirmar que ...

$$A V_1 > V_2 > V_3$$

$$\mathbf{B} \quad \mathbf{V}_1 = \mathbf{V}_2 = \mathbf{V}_3$$

$$C V_1 < V_2 < V_3$$

D
$$i_1 > i_2 > i_3$$

39. Ao medir a temperatura de um gás, verificou-se que a temperatura era a mesma, tanto na escala Celsius como na Fahrenheit. Qual era essa temperatura?

A -41°C e -41°F B 40°C e 40°F C -40°C e -40° D 68°C e 68°FF

Uma grandeza escalar fica caracterizada quando conhecemos... 40.

sua direcção. A

seu módulo acompanhado de uma unidade. \mathbf{B}

seu sentido. \boldsymbol{C}

D sua direcção e seu sentido.

FIM