
	Questões	Co
1	O movimento de um móvel é descrito pelo gráfico da velocidade em função do tempo mostrado ao lado. O espaço percorrido entre os instantes 3 e 7 segundos respectivamente vale:	0,5
	A. 24m B. 12m C. 4m D. 8m E. 16m	
2	Ainda sobre a primeira pergunta: A aceleração do móvel é A. 2m/s² B2m/s² C.3m/s² D. 0m/s² E 12m/s²	0,5
3	Uma pedra é arremessada do Ponto P com uma velocidade de 10 m/s numa direcção que forma um ângulo de 45 graus com a horizontal, atingindo o ponto Q conforme indicado no esquema: Considerando que a resistência do ar é desprezível, a distância d indicada no esquema, em metros, é um valor mais próximo de:	0,5
	A. 2.4 B. 7.1 C. 12 D. 14 E. 24	
4	Um carro mantém uma velocidade escalar constante de 72,0 km/h. Em uma hora e dez minutos ele percorre, em quilómetros, a distância de: A. 79,2 B. 84,0 C. 80,0 D. 90,0 E. 82,4	0,5
	Na figura, o carrinho A tem 10 kg e o bloco B, 0,5 kg. O conjunto está em movimento e o bloco B, simplesmente encostado, não cai devido ao atrito com A (0,4). O menor módulo da aceleração do conjunto, necessário para que isso ocorra, é: Adopte g - 10 m/s².	0,5
5	A. 25 m/s ² B. 15 m/s ² C. 5 m/s ² D. 20 m/s ² E. 10 m/s ²	
5	25 m/s ² P. 15 12 2 2 2 2 2 2	0,5

2	reservatório, que se encontra a 25 °C. Qual a razão entre a massa de água quente e a massa de água fria na mistura para um banho à temperatura ideal?	
	A. 0,111. B. 0,125. C. 0,357. D. 0,428. E. 0,833.	0,5
13	Um pesquisador, ao realizar a leitura da temperatura de um determinado sistema, obteve o valor - 450. Considerando as escalas usuais (Celsius, Fahrenheit e Kelvin), podemos afirmar que o termómetro utilizado certamente não poderia estar graduado: A. Apenas na escala Celsius C. Apenas na escala Kelvin D. Nas escalas Celsius e Kelvin E. Nas escalas Fahrenheit e Kelvin	
14	Ao desejar identificar o conteúdo de um cilindro contendo um gás monoatómico puro, um estudante de Química colectou uma amostra desse gás e determinou sua densidade, d=5,38 g/L, nas seguintes condições de temperatura e pressão: 15°C e 0,97atm. Com base nessas informações, e assumindo o modelo do gás ideal, a massa molar do gás no S.I é: Dado: R = 0,082 A. 1,310 B. 6,81 C. 13,10 D. 124,23 E. 131,05	0,5
15	a(m)	
16	Qual dos gráficos representa a força de interacção entre duas cargas eléctricas separadas por uma distância r? F A B C D E	0,:
	No interior de um condutor homogéneo, a intensidade da corrente eléctrica, varia com o tempo como mostra o diagrama:	U,

3	Considerando a velocidade da luz igual a 300 000 km/s a frequência das ondas utilizadas é	
)	A. 360 Hz. B. 250 kHz. C. 3,6 MHz. D. 2,5 MHz. E 30 HZ	0.5
4	Supondo que a meia-vida de um isótopo radioactivo seja um dia, após 48 horas a quantidade restante deste isótopo será: A. 1/2 da quantidade inicial. B. 1/4 da quantidade inicial. C. 1/24 da quantidade inicial. D. 1/48 da quantidade inicial. E. zero	0,5
.5	A barra homogénea de peso P=2 000N está em equilíbrio sobre dois apoios. A força de reacção no ponto B vale: A. 2 000 N B.1 500 N C.2 250 N D. 1 000 N	0,5
26	E. 1 250 N As cargas eléctricas punctiformes Q_1 e Q_2 , posicionadas em pontos fixos conforme o esquema abaixo, mantêm, em equilíbrio, a carga eléctrica punctiforme q alinhada com as duas primeiras. De acordo com as indicações do esquema, o módulo da razão $\frac{Q_1}{Q_2}$.2 ? A. $\frac{2}{a}$ B. $\frac{3}{a}$ C. 2 D. 9 E. 36	0,5
27	Um cordão de lâmpadas de Natal é formado com a ligação em série de lâmpadas iguais, onde cada uma tem resistência de 8 Ω e potência de 0,5 W. Quantas lâmpadas formam esse cordão, se ele é ligado em 110 V?	0,2
	A. 20 lâmpadas B.14 lâmpadas C. 55 lampadas D. 60 lampadas	0
	A figura abaixo representa uma partícula de carga q = 2. 10 8C, imersa, em repouso, num campo eléctrico uniforme de intensidade E= 3.10 N/C.	0,
28	O peso da partícula, em Newtons é de :	
28		0.

	A imagem que se observa de um microscópio composto é:	0,5
35	A. real e invertida B. real e ampliada C. real e direita D. virtual e invertida E. virtual e direita	
	Alguns exemplos de materiais que podem ser utilizados nos reactores de fissão nuclear, por serem fosseis, são: U ²³⁵ e Pu ²⁹⁴ De acordo com o exposto, podemos afirmar que um material fossil é aquele que é capaz de originar:	0,5
6	A. Dois ou mais núcleos atómicos menores. atómico menor.	
	Dois ou mais núcleos atómicos maiores. atómico maior. D. um único núcleo	
	E. nada.	
37	Quando um elemento X emite partícula beta, transforma-se em Y. Os elementos X e Y são: A. isótopos B. isóbaros C. alótropos D. isótonos	0,5
Y	E. isoelectrónicos	0,5
8	A. fissão; B. onde ocorre apenas emissão de raios alfa C. onde ocorre apenas emissão de raios beta; D. Fusão; E. onde ocorre apenas emissão de raios gama.	
39	Na reacção de fissão nuclear do Urânio U_{92}^{235} representado pela equação química: $U_{92}^{235} + n_0^1 \rightarrow X + Kr_{36}^{94} + 2.n_0^1 + \text{Energia.} \text{Pode-se afirmar que X possui:}$ A. 84 Neutrões e número de massa igual a 141 B. 55 prótons e número de massa igual a 140. 56 prótons e número de massa igual a 141. D. 56 prótons e 85 nêutrons. 6. E. 56 prótons e 84 nêutrons	0,5
40	Observe as figuras abaixo, considerando-as modelos atómicos. Qual desses modelos é o mais actual e qual o nome do cientista que o estudou?	0,5
	A. I, Dalton. B. II, Dalton. C. I, Thomson. D. II, Rutherford.	

	Pode se afirmar que o valor médio da intensidade da corrente entre os instantes 1 minuto e 2 minutos respectivamente são:	
	A. 500A B. 0,005A C. 0,5A D. $\frac{1}{6}$ A E. $\frac{10}{6}$ A	
8	Dada a função horária da elongação: $x = 3 \cdot \cos \left(5\pi \cdot t + \frac{\pi}{4}\right)$ A amplitude, frequência cíclica, o período e a fase inicial são: A. 5π ; 3; $\frac{\pi}{4}$; 0,9 B. 0,4; 3; 5π ; $\frac{\pi}{4}$ C. 3; 5π ; 0,4; $\frac{\pi}{4}$ D. 2,12; 3; 5π ; $\frac{2\pi}{3}$ E. 9; $\frac{3}{2\pi}$; 0,4; $\frac{\pi}{3}$	0,5
	The first of the f	0,5
9	As antenas das emissoras de rádio emitem ondas electromagnéticas que se propagam na atmosfera com a velocidade da luz (3,0.10 ⁵ km/s) e com frequências que variam de uma estação para a outra. A rádio RDP emite uma onda de frequência 90,5 MHz e comprimento de onda aproximadamente igual a:	
	A. 2,8 m B. 3,3 m C. 4,2 m D. 4,9 m E. 5,2 m	
20	Uma partícula oscila ligada a uma mola leve executando movimento harmónico simples de amplitude 2,0m. O diagrama seguinte representa a variação da energia potencial elástica (Ep) acumulada na mola em função da elongação da partícula (x). Pode-se afirmar que a energia cinética da partícula no ponto de elongação x = 1,0m, vale:	0,5
	Paratrana as P	
	A. 3,0.10 ³ J B. 2,0 . 10 ³ J C.1,5 . 10 ³ J D. 1,0.10 ³ J E. 5,0 . 10 ² J	0
21	Quando se faz incidir luz de uma certa frequência sobre uma placa metálica, qual é o factor que determina se haverá ou não emissão de fotoelectrões? A. A área da placa. B. O tempo de exposição da placa a luz. C O material da placa.	
21	A. 3,0.10 J E. 5,0.10 J Quando se faz incidir luz de uma certa frequência sobre uma placa metálica, qual é o factor que determina se haverá ou não emissão de fotoelectrões? A. A área da placa. B. O tempo de exposição da placa a luz. C O material da placa. D. O ângulo de incidência da luz. E A intensidade da luz. No circuito ao lado, determine: resistência	0,
221	 A. 3,0.10 3 E. 5,0.10 J Quando se faz incidir luz de uma certa frequência sobre uma placa metálica, qual é o factor que determina se haverá ou não emissão de fotoelectrões? A. A área da placa. B. O tempo de exposição da placa a luz. C O material da placa. D. O ângulo de incidência da luz. Luz. No circuito ao lado, determine: resistência equivalente, a corrente total e a potência dissipada no resistor R₁, são: A. 2, 16,10 B. 18, 2, 16 C. 2, 2, 18 C O material da luz. E A intensidade da luz. R₁ 4Ω R₂ 12 Ω R₃ 12 Ω R₃ 12 Ω R₃ 12 Ω R₃ 12 Ω R₄ 12 Ω R₄ 12 Ω R₄ 12 Ω R₅ 12 Ω R₇ 12 Ω R₈ 12	0,

	$A_1 = 10 \text{ cm}^2$ $A_2 = 5 \text{ cm}^2$	
	$v_1 = 5 \text{ m/s}$	
	(1)	
30	Assinale a alternativa que indica um dispositivo ou componente que só pode funcionar com corrente eléctrica alternada ou, em outras palavras, que é inútil quando percorrido por corrente contínua A. lâmpada incandescente B. fusível C. electroíman D. resistor	0,.
31	Considere a espira percorrida pela corrente e o ímã, como indicado na figura. Como são os vectores campo magnético? A. Horizontais, para a direita	0,5
	B. Horizontais, para a esquerda C. verticais, para cima D. verticais, para baixo E. verticais, sendo o da espira para cima e o do ímã, para baixo.	
2	A figura mostra a variação do volume de um gás ideal, à pressão constante de 4 N/m², em função da temperatura. Sabe-se que, durante a transformação de estado de A a B, o gás recebeu uma quantidade de calor igual a 20 joules. A variação da energia interna do gás entre os estados A e B foi de:	0,5
	A. 4 J B. 16 J C. 24 J D. 380 J E. 420 J	
3	Uma pessoa está vestindo uma camisa que possui impresso o número 54. Se essa pessoa se olhar em espelho plano, verá a imagem do número como: a) 54 b) 24 c) 24 d) 42 e) 5t/	0,5
	O esquema abaixo representa as três fases de uma substância pura, e as setas indicam algumas mudanças de fases possíveis. As setas x, y e z correspondem, respectivamente, a: A. liquefacção, vaporização e condensação B. fusão, vaporização e sublimação C. liquefacção, condensação e vaporização D. fusão, sublimação e vaporização E. solidificação, liquefacção e sublimação	0,5