

COMISSÃO DE EXAMES DE ADMISSÃO EXAME DE FÍSICA – 2023

Duração: 120 minutos

LEIA ATENTAMENTE AS SEGUINTES INSTRUÇÕES:

- A prova é constituída por quarenta (40) perguntas de escolha múltipla, todas com quatro (4) alternativas de resposta, estando correcta somente UMA das alternativas.
- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer folha adicional, incluindo este enunciado.
- 3. Não é permitido o uso de máquina de calcular e todo tipo de equipamento electrónico.

D. 144 segundos

C. 124 segundos

	B. 4	C. 5	D. 1
3. Quando se liga um PC normal de operação de durante esse intervalo	C, o disco rígido demora 3,6 s, a 7200 rotações por minuto. A determine o valor da acelera	partir do repouso, a Admitindo acelera ação angular.	
A. $182 \ rad/s^2$	B. 209 <i>rad/s</i> ²	C. 838 rad/s ²	D. 419 rad/s ²
. Qual das afirmações	s seguintes é a correcta?		
C. A segunda lei de Ne	wton é também chamada princi wton é também chamada princí wton é também chamada princí vton é também chamada princíp	pio da acção e reacç	~_
5. Em uma cobrança de um jogador lhe imprime bola é de cerca de 500 por cerca de 0,015 s.	e penalidade máxima, estando a e a velocidade de aproximadame g e que, durante o chute, o pé d A força média que o pé do ju B. 50 N	ente 108 <i>km/h</i> . Saben o jogador permanece ogador aplica na bo	do-se que a massa da e em contato com ela ola tem o valor de,
5. Em uma cobrança de um jogador lhe imprime bola é de cerca de 500 por cerca de 0,015 s. aproximadamente, A. 5 N 6. Uma garota de masse ponto M do escorregado sem sofrer a acção da ponto N. Sabendo que N	e penalidade máxima, estando a e a velocidade de aproximadame g e que, durante o chute, o pé d A força média que o pé do j	ente 108 <i>km/h</i> . Saben o jogador permanece	do-se que a massa da

1. O intervalo de tempo de 2,4 minutos equivale, no Sistema Internacional de Unidades (SI), a:

2. Qual é em metros a altura a que se deve deixar cair um corpo para que chegue ao solo com

B. 160 segundos

uma velocidade de 10 m/s? Despreza-se a resistência do ar. $(g = 10 \text{ m/s}^2)$

B. 4

A. 24 segundos

A. 1

7. Um bloco de massa 2m move-se com a velocidade de 11 m/s e colide com outro de massa m, que seguia na mesma direcção, mas em sentido contrário com uma velocidade de 4 m/s. Qual é, em m/s, a velocidade do conjunto, se após a colisão os blocos se movem juntos?

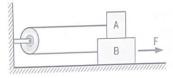
A. 5

B. 6

C.7,5

D. 8

8. Um corpo de massa 12~kg desloca-se sobre uma superfície horizontal, sob a ação de uma força de módulo 100 N, que forma um ângulo de 30°, com a horizontal para cima. O módulo da força normal, em N, que a superfície exerce sobre o corpo é:


A. 170

B. 50

C. 120

D. 70

9. O bloco A tem massa 2 kg e o B 4 kg. O coeficiente de atrito estático entre todas as superfícies de contato é 0,25. Se $g = 10 \text{ m/s}^2$, qual é a força F aplicada ao bloco B capaz de colocá-lo na iminência de movimento?

A. 5 N

B. 10 N

C. 25 N

D. 20 N

10. Um corpo de 4 kg descreve uma trajectória rectilínea que obedece à seguinte equação horária: $x = 2 + 2t + 4t^2$, onde x é medido em metros e t em segundos. Conclui-se que a intensidade da força resultante do corpo em newtons vale:

A. 16

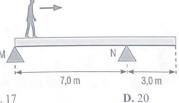
C. 24

D. 32

11. O sistema da figura encontra-se em equilíbrio. Determine as trações T_1 e T_2 nos fios AB e AC, respectivamente. O peso do corpo P é 200 N.

A. $T_1 = 200 Ne T_2 = 120 N$ C. $T_1 = 215 N e T_2 = 325 N$ **B.** $T_1 = 283 N e T_2 = 200 N$ $\mathbf{D}.T_{I} = 300 \ Ne \ T2 \ 5 \ 200 \ N$

12. As unidades $J/(m \cdot kg)$ (joule sobre metro vezes quilograma) podem ser usadas para medir:


A. Energia

B. Aceleração

C. Trabalho

D. Quantidade de movimento

13. Uma prancha de madeira, homogênea, de comprimento 10 m e pesando 600 N é mantida horizontal, apoiada nos pontos M e N, como mostra a figura ao lado. Úm homem de peso 800 N caminha sobre a prancha, partindo de M, com velocidade constante de 50 cm/s. Determine o intervalo de tempo, em segundos, que o homem pode caminhar sobre a prancha sem que a mesma vire.

A. 5

C. 17

3

14. Um líquido, suposto incompressível, escoa através de uma mangueira cilíndrica de raio r e enche um recipiente de volume V em um intervalo de tempo t. A velocidade de escoamento do líquido, suposta constante, tem módulo igual a...

$$\mathbf{A}.\,V\pi r^2t$$

B.
$$\frac{V}{\pi r^2 t}$$

$$C. \frac{V\pi r^2}{t}$$

$$\mathbf{D}.\,\frac{V}{\pi rt}$$

15. Um fluido escoa por uma tubulação com uma velocidade média de 1,4m/min. Sabendo que a área da secção da tubulação é igual a 42 cm². Qual é em cm³/s, a vazão?

16. Temos visto ultimamente uma farta divulgação de boletins meteorológicos nos diversos meios de comunicação e as temperaturas são geralmente indicadas nas escalas Fahrenheit e/ou Celsius. Entretanto, embora seja a unidade de medida de temperatura do SI, não temos visto nenhuma informação de temperaturas em Kelvin. Se o boletim meteorológico informa que no dia as temperaturas mínima e máxima numa determinada cidade serão, respectivamente, 23 °F e 41 °F, qual a variação dessa temperatura na escala Kelvin?

17. Ao colocar a mão sob um ferro eléctrico quente sem tocar a sua superfície, sentimos a mão "queimar". Isso ocorre porque a transmissão de calor entre o ferro eléctrico e a mão se deu principalmente através de:

A. irradiação.

B. condução e convecção.

C. condução.

D. convecção e irradiação.

18. Qual é a quantidade de calor necessária para fundir 100 g de gelo, inicialmente a -10 °C?

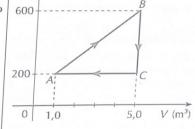
O calor específico do gelo é igual a 0,5 cal/g. °C e o calor latente de fusão do gelo é de 80 cal/g.

A.
$$8,5.10^3$$
 cal

B.
$$855.10^3$$
 cal

↑p (N/m²)

D. 85.10³ cal


19. Um gás sofre a transformação cíclica *ABCA*, indicada no gráfico. A variação da energia interna e o trabalho realizado pelo gás valem, respectivamente:

A.
$$\Delta U = 0 J$$
 e $W = 0 J$

B.
$$\Delta U = 0$$
 J e $W = 8.10^2 J$

C.
$$\Delta U = 0.5.10^2 Je W = 1.5.10^3 J$$

D.
$$\Delta U = 8.10^2 Je W = 0 J$$

A. 209 J	В. 3.135 Ј	C. 3.344 J	D. 3.553 J
Sendo l $cal = 4,18$	J, o aumento da energia inte	rna desse gás foi de:	
transformação. Ne	ssa transformação fornecemos 8	800 <i>cal</i> ao gás e ele realiza c	trabalho de 209 J.
	do em um recipiente dotado d		

21. Uma partícula executa um movimento harmônico simples descrito pela função horária x = $2.\cos\left(\frac{\pi}{2}t\right)$, em unidades do SI. A amplitude e o período desse movimento são, respectivamente:

D. $2 m e^{\frac{2}{3}} s$ B. $2 m e^{\frac{\pi}{2}} s$ C. 1 m e 4 s A. 2 m e 4 s

22. O som é uma onda longitudinal porque não apresenta:

D. polarização. C. difração. B. refração. A. reflexão.

23. Um radiorreceptor opera em duas modalidades: uma, AM, que cobre a faixa de frequência de 600 kHz a 1500 kHz, e outra, FM, de 90 MHz a 120 MHz. Lembrando que 1 kHz = 1.10^3 Hz e 1 $MHz = 1.10^6 \ Hz$ e sabendo que a velocidade de propagação das ondas de rádio é $3.10^8 \ m/s$, o menor e o maior comprimento de onda que podem ser captados por esse aparelho valem, respectivamente:

D. 1,33 m e 600 m C. 6,0 m e 1 500 m B. 3,33 m e 500 m A. 2,5 m e 500 m

24. Um observador vê um peixe em um lago de águas límpidas, na direção que forma um ângulo de 5° com a normal. Sabendo que o peixe está em uma profundidade de 80 cm e considerando 4/3 o índice de refração da água, calcule a profundidade aparente em que o observador, supostamente fora desse meio, vê o peixe.

D. 60 cm C. 45 m B. 30 m

25. Num ecrã LCD de um televisor, qual das seguintes propriedades da luz é utilizada para

produzir as imagens? D. Polarização C. Refracção B. Difracção

A. Efeito fotoeléctrico 26. O módulo da força eléctrica entre duas cargas pontuais é F. Se a distância entre as cargas aumentar num factor de 5, o módulo da força eléctrica entre elas será:

D. F/25 C. 10/F B. 25F A. F/10

27. Três condensadores idênticos, todos com capacidade C, ligam-se em série. A capacidade equivalente do sistema é:

A. 3C	B. C/3	C. C3	E. 2 C/
	a figura, sabendo que a ,5 A, determine o valor da C. 2 V D. 10 V	$5\sqrt{T}$	4Ω .2 V Ω
29. Calcule a resistên de operação.	ncia de uma lâmpada incar	ndescente de 4 W e 12 V, nas	condições normais
Α. 36 Ω	Β. 18 Ω	C. 24 Ω	D. 72 Ω
A. 1 C/(mA·s)	ético com valor de 10 G é e B. 1 N·A/ms	equivalente a: C. 1 N·ms/(C·m)	D. 1 N·mC/(s·m)
32. Um condutor recto campo magnético de i Newton, o valor da fo	intensidade $B = 2.10^{-8} T$ e 6	o, é colocado perpendicularm é atravessado pela corrente I=	ente às linhas do =2A. Qual é, em
A . 10 ⁻⁶	B. 3.10 ⁻⁶	C. 2.10 ⁻⁸	D. 3.10 ⁶
echado é a existência A. Cargas de condução B. Campo magnético va C. Movimento do circu	de:	ue exista uma <i>fem</i> induzida n gnético;	um circuito
4. Triplicando-se a ten		orpo negro, o seu poder emiss	sor de energia

. 5,4	B. 54	C. 540	D. 5400
Suponha que ess eléctrica. Qual é	metalúrgica consome, por mêsa fábrica possui uma usina cap, em gramas, a massa necessáris? (1kWh=3,6×10 ⁶ J).	az de converter directamer	nte massa em energi
		C. 8	D. 80
37. Para duas es	B. 0,8 strelas A e B , a razão λ_B/λ_A ent		
37. Para duas es			
37. Para duas es Pode-se afirma A. $T_B = TA$	strelas A e B , a razão λ_B/λ_A entar deste modo, que: B. $T_B = 2T_A$ a frase: As ondas electromagn	re os seus comprimentos de $C. T_B = 3T_A$	onda máximos é 0,2 $\mathbf{D.} \ T_B = 5T_A$
37. Para duas es Pode-se afirma A. $T_B = TA$ 38. Complete	strelas A e B , a razão λ_B/λ_A entar deste modo, que: B. $T_B = 2T_A$ a frase: As ondas electromagna de:	re os seus comprimentos de $C. T_B = 3T_A$	onda máximos é 0,2 $D. T_B = 5T_A$ ima da dos <i>raios-X</i>
Pode-se afirma A. $T_B = TA$ 38. Complete recebem o nor A. ondas longa 39. O elemento	strelas A e B , a razão λ_B/λ_A entar deste modo, que: B. $T_B = 2T_A$ a frase: As ondas electromagna de:	re os seus comprimentos de $C. T_B = 3T_A$ téticas com frequência ac $C.$ raios gama.	onda máximos é 0,2 $\mathbf{D.} \ T_B = 5T_A$ ima da dos <i>raios-X</i> $\mathbf{D.} \ \text{raios catódicos}.$

FIM!

B. Desintegração Beta

A. Desintegração Alfa

D. Fusão

C. Desintegração gama