

ACADEMIA CLÍNICA DO SABER

PEDRO RAFAEL AFONSO
INSTITUTO SUPERIOR TÉCNICO MILITAR –ISTM
EXAMES DE ACESSO 2017-2018

VESTIBULANDO UM GUIA DE PREPARAÇÃO

QUEM SOMOS / NOSSA MISSÃO

ACADEMIA CLÍNICA DO SABER é um centro Preparatório que tem como missão oferecer orientações, habilidades e conhecimentos que permitem que estudantes superem os desafios e melhorarem o seu desempenho académico em qualquer instituição de ensino. As aulas são direcionadas para todos os níveis de ensino.

PREFÁCIO

PARA O ESTUDANTE,

O propósito deste manual é ajudar os estudantes na resolução dos exercícios dos testes de matemática e física do Instituto Superior Técnico Militar-ISTM, na área de engenharias. Portanto, recomendamos a utilizar o seu maior tempo em resolver os exercícios.

Quando se resolve um exercício, se aprende muito mais do que só se lê a resolução. É bem sabido que, a prática leva a perfeição, onde a verdadeira aprendizagem requer uma participação activa de sua parte.

Utilize este manual como incentivo para resolver problemas, não como uma forma de evitar a sua resolução.

As suas críticas, sugestão ou dificuldades que tenha encontrado na hora da resolução, pedimos que entre em contacto connosco urgentemente, afim de aperfeiçoamento do manual e suas ideias são fundamentais para o nosso trabalho.

Facebook: Página Academia Clínica do Saber

E-mail: delarafapedro@gmail.com

Obs: A venda do presente material sem autorização do autor é punível pela Lei nº 4/19, de março, lei dos direitos do autor, que regula a protecção de Autor e conexos nas áreas das artes, literatura, ciência ou outra forma de reconhecimento. Respeite a lei.

- 1°) (**Teste 2018 Variante I**)Seja a expressão $M = 3xy + \{-2x^2y + xy 2x^2y 2x^2y + xy 2x^2y 2x^2y$ $[4xy^2 - (xy + 5x^2y)] + 4x^2y + 7xy^2$. Se se suprimir os sinais de agrupamento e se reduzir os termos semelhantes, se obterá como resultado:

 - A) $7x^2y + 3xy^2 + 5xy$ B) $-3x^2y + 8xy^2 + 3xy$ C) $5xy x^2y + 5xy^2$
 - **2°)** (**Teste 2018 Variante I**):Dados $A = \frac{m^2 3m}{m^2 9}$, $B = \frac{m}{(m+1)(m-3)}$ e $C = \frac{2+m}{m-3}$
 - a) Quando se simplifica A obtem-se:
- A_1) $\frac{\text{m}}{\text{m+3}}$
- A_2) $\frac{m}{(m-3)}$ A_3) $\frac{m}{3}$
- b) Ao calcular B + C obtemos: $B_2 \frac{2m-3}{(m+1)(m-3)} \qquad B_1 \frac{m^2+4m+2}{(m+1)(m-3)^2}$
- B_1) $\frac{2m-3}{(m+1)(m-3)}$

- c) A expressão C anula-se se: n = 2 C_2) m = 3 C_3) m = -2
- C_1) m = 2

- 3º) (Teste 2018 Variante I) Dada a inequação $x^4 6 > -5x$. Demostra a solução gráfica.
- Solução granca. 4°) (**Teste 2018 Variante II**) Sejam: $A = \frac{2x^2 + 5x + 2}{x^2 + 2x}$, $B = \frac{2x}{x + 2}$ e $C = \frac{x}{5(x 1)}$
 - a) Simplifique a expressão de A
 - b) Calcule: M = A B
 - c) Racionalize a expressão B para $x = \sqrt{2}$
- **5°)** (**Teste ISTM-2018**) Dado o polinómio $P(x) = x^n + x^{n-1} + \dots + x^2 + x + 3$ se n for impar, então P(-1) vale:
- Resp: A) -1 B) 0 C)2 D) 3 E) 4
 - 6°) (**Teste 2018 Variante II**) Resolva a seguinte inequação: $\frac{x-4}{x+4} < 0$
 - 7°) (**Teste 2018 Variante C**) A soma das raízes da equação iz² -z + 2i = 0é:
- Resp: A) i B) -i C) -2i D) 2i

ACADEMIA CLÍNICA DO SABER & DEPARTAMENTO DE SUPERAÇÃO ACADÉMICO								
) valor da rac	cionalização	do denomina	ıdor da		
expressa	$\tilde{a}o \frac{A}{(6\sqrt{72}+\sqrt{4)}}$	e:						
A)) 2	B) 3	C) 6	D)	8	E) 9		
9°) (Te	ste 2018 – V	ariante C) I	Levante a sol	lução da Inec	quação:			
(x-2)	$)^{100}\cdot (3-x)$	$)^{99}\cdot(x-1)$	≤ 0					
<i>A</i>) Ø	B) IR	C) (3) ∪ (−∞; 3)	D)	Outro			
desconte aumente	o sobre os pr o percentual?	odutos. Para	retornar aos	preços origi	nidação de 70 nais, qual dev	ve ser o seu		
A) 30%	6 B) 70)% <i>C</i>)	233,5%	D) 50%	E) Outros	40.		
Resolução:					~ A	\mathcal{P}		
_		liquidação o			CO			
Logo deven	nos achar y t	al que: 0,7 <i>x</i>	(1+y)=x	$c \rightarrow 0.7 + 0.0$	7 y = 1			
0.7y = 1 -	$0.7 \rightarrow y =$	$\frac{0.3}{0.7} \to y = 0$,428 ≈ 0,4	3, y = 0.43	ou $y = 43\%$, Línea E)		
11°) (T	este ISTM-2	2018) Um blo	oco de massa	3 kg desloc	a-se por um p	olano		
			A		le atrito pode			
que:								
	F ₃		F _a	F				
	10.1				problemática			
					10 m/s	,2		
20 r	n/s^2 X	5 <i>m</i> /	's ² .Demons	tre-o median	ite cálculos.			
3) O tij		ento que real RUV(R)	iza o corpo	ś: Ν	MRUV(A)	MRU		
4) A ed	quação para o	calcular o des	locamento a	o longo do t	empo, se con	hece a		
velo	cidade inicia	ıl do bloco é:		s = v.t	$_{s} = \frac{at^{2}}{2}$	<u>.</u>		
	X	$s = v_o t + \frac{a}{2}$	$\frac{ut^2}{2}$		2			

Resolução:

- 1) O diagrama correspondente é o gráfico do meio.
- 2) Como não existe atrito, a única força que actua na direcção horizontal (para baixo) é o próprio peso do bloco, logo pela segunda lei de Newto:

$$P_x = ma \rightarrow mg \ sen 30^\circ = ma \rightarrow a = g \ sen 30^\circ = 10 \times \frac{1}{2} \rightarrow a = 5 \ m/s^2$$

- 3) Como o bloco parte acelerado para baixo, ele terá um MRUV (A)
- 4) Como a celeração do bloco é posetiva, e parte acelerado para baixo com uma velocidade inicial, o deslocamento será dado por: $s = v_0 t + \frac{at^2}{2}$
- 5) Caso existisse atrito a aceleração do corpo diminuiria porque a força de atrito se opõe sempre ao movimento do corpo.

12°) (Teste ISTM-2018) Na práctica do laboratório um aluno faz oscilar o sistema corpo-mola depois de tirá-lo 10 cm da posição de equilíbrio. Se massa do corpo for 5 kg e a constante elástica da mola é de 200 π^2 N/m. Analise e responda:

- A frequência angular do sistema corpo-mola é _____ 40 π rad/s ____ X____ 5 π rad/s _____ 25π² rad/s
 O periodo das oscilações é: ______ 2,5 s _____ 90 s ___ X___ 0,4 s
- 3) O gráfico de x = f(t) é:
- 4) Se aumentar a massa do corpo a 32 kg, a frequência angular do sistema do corpo é: ____ 4 vezes menor____ igual ____ a metade ____X___ 4 vezes maior

13°) (**Teste ISTM-2018**) Simplifica a expressão:
$$(x^{2k} - y^{2k}) \times \frac{x^{k+1} - xy^k}{y^{k+1} + yx^k}$$

$$(x^{2k} - y^{2k}) \times \frac{x^{k+1} - xy^k}{y^{k+1} + yx^k}$$

$$[(x^k)^2 - (y^k)^2] \times \left[\frac{x^k \cdot x - xy^k}{y^k \cdot y + y \cdot x^k} \right] = \left[(x^k - y^k)(x^k + y^k) \right] \times \frac{x(x^k - y^k)}{y(y^k + x^k)}$$

$$=\frac{x(x^k-y^k)^2}{y}$$

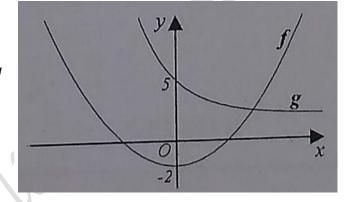
14°) (Teste ISTM-2017) Sejam a, x e y três números reais tais que $\log_a x = 1 + 1$ $4 \log_a y$

Qual das seguintes igualdades é necessariamente verdade?

a)
$$x = ay^4$$
 B) $x = 4ay$ C) $x = 4y$ D) $x = y^4$

15°) (**Teste ISTM-2017**) Indique as soluções da equação: -1 + 2sen(x) = 0 que pertence ao intervalo $[0; 2\pi]$

Resp: A)
$$\frac{\pi}{3}$$
 e $\frac{2\pi}{3}$ B) $\frac{\pi}{3}$ e $\frac{4\pi}{3}$ C) $\frac{\pi}{6}$ e $\frac{5\pi}{6}$ D) $\frac{\pi}{6}$ e $\frac{11\pi}{6}$


16°) (**Teste ISTM-2017**) Considere, num referencial o.n. Oxyz, dois vectores dados por $\vec{u} = (1; 3; -5)$ e $\vec{v} = (-1; -3; a)$, $a \in R$. Qual o valor de a de modo que os vectores \vec{u} e \vec{v} sejam perprendiculares entre si?

$$A) 5 B) - 5 C) 2 D) - 2$$

17°) (**Teste ISTM-2017**) Na figura seguinte, está parte da curva gráfica de uma função polinomial f. Qual das expressões seguintes pode definir a segunda derivada da função f?

A)
$$4x B$$
) $x^2 - 4 C$) $4 - x^2 D$) $- x^3 + 4x$

18°) (**Teste IST-2017**) Na figura estão representadas partes dos gráficos de duas funções , f e g, contínuas em R . os gráficos de f e g intersetam o eixo 0y nos pontos de coordenadas -2 e 5, respectivamente.

Apenas uma das equações é impossível. Qual delas ?

A)
$$f(x) + g(x) = 0$$
 B) $f(x) - g(x) = 0$ C) $f(x) \times g(x) = 0$ D) $\frac{f(x)}{g(x)} = 1$

19°) (**Teste ISTM-2017**) Considere o ponto A(1; -3; 4) e o plano α é definido pela equação α : -x + 2y - z = 1

- a) Verifique se o ponto B(-3; 1; 5) pertence ao plano α
- b) Determine as equações cartesianas da recta que passa por A e é perpendicular ao plano α .

20°) (**Teste ISTM-2017**) Seja
$$u_n$$
 definida por :
$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{u_n}{1-2u_n}, \ \forall \ n \in \mathbb{N} \end{cases}$$

- a) Prove, pelo método da indução , que $u_n = \frac{1}{1-2n}$, $\forall \ n \in \mathbb{N}$
- b) Estude u_n quanto à monotonia.
- c) Classique u_n quanto a convergência.

21º) (Teste ISTM-2017) Resolva em R, a inequação:

$$\log_{10}(2x - 1) < \log_{10}\left(\frac{1}{x}\right) - \log_{10}(3)$$

22°) (Teste ISTM-2017) Considere as funções reais de variável real

$$f(x) = e^x - 1 e g(x) = \frac{x}{x+2}$$

- a) Calcule $\lim_{x\to 0} \frac{f(x)}{g(x)}$
- b) Resolva a equação $(f \circ g)(x) = e^{-1} 1$

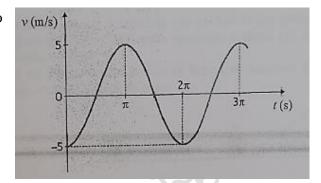
23°) (Teste ISTM-2017) Seja f a função, de domínio R, definida por

$$f(x) = \begin{cases} \ln(-2x^2 + x + 1) - 3k & \text{se } x \ge 0 \\ -\frac{2 \operatorname{sen}(x)}{x} & \text{se } x < 0 \end{cases}$$

- a) Determine o número real k de modo que a função seja contínua em x = 0
- b) Calcule a derivada da função, f'(x), para x > 0, e determine a equação da recta tangente ao gráfico de f no ponto de abcissa $x = \frac{1}{2}$.

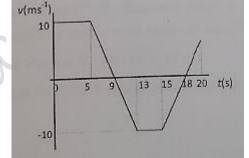
24°) (**Teste ISTM-2017**) Considere a função real $f(x) = \frac{x^2}{2x^2-8}$, determine:

- a) O dominío da função.
- b) Os intervalos de crescimento e de descrecimento de f e os seus extremos.
- c) As assíntotas do gráfico f.

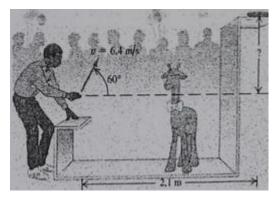

25°) (**Teste ISTM-2017**) Classifique as seguintes afirmações em verdadieras (V) ou falsas (F):

- a) Quando duas esferas de massas iguais, que deslocam sem atrito com velocidades simétricas, colidem , a velocidade do centro de massa do sistema é nula___V__
- b) Numa colisão elástica , as velocidades dos corpos variam, mas a energia cinética permanece constante $_V$ $_$
- Numa colisão inelástica, os corpos têm a mesma velocidade ao se separaremse__F__
- d) Numa colisão inelástica o momento linear varia__F___
- e) Numa colisão perfeitamente inelástica, os corpos permanecem juntos após o choque __V___

Justificação:


- a) A velocidade do centro de massa é dada pela relação: $v_{CM} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$, pois, se o corpos tiverem a mesma massa e velocidades simétricas ($v_2 = -v_1$) o centro de massa será nulo;
- A colisão é dita elástica quando ocorre conservação da energia e do momento linear dos corpos envolvidos, a principal característica desse tipo de colisão é que, após o choque, a velocidade das partículas muda de direcção;
- c) Os corpos só possuem as mesmas velocidade numa colisão completamente inelástica, e após o choque obrigatoriamente movem-se juntos;
- d) Numa colisão inelástica o momento linear do sistema sempre se conserva;

- e) Uma das características das colisões perfeitamente elástica é que o corpos se movem com as mesmas velocidades depois do choque.
- **26°)** (**Teste ISTM-2017**) O gráfico em baixo representa a variação da velocidade, em função do tempo, de uma partícula de massa 200 g em MHS. Classifique as afirmações em Verdadeiras (V) ou Falsas (F)


- 1) A frequência angular do movimento é 1,0 rad^{-1}
 - a) A amplitude do movimento é de 5,0 m
 - b) A equação da elongação da partícula é: $x = 10 sen \left(t + \frac{\pi}{6}\right)$
 - c) No instante $t = \pi s$, a elongação tem o seu valor máximo posetivo.
 - d) A energia mecânica do oscilador é 5 J.

27°) (**Teste ISTM-2017**) A variação da velocidade em função do tempo de um corpo que descreve um movimento rectilíneo é dada pelo gráfico da figura. Indique, justificando:

- a) Os intervalos de tempo em que o movimento é uniforme, acelerado e retardado.
- b) A posição do corpo para $t=13\ s$, sabendo que para $t=0\ s$ o corpo se encontra na posição $x_o=2\ m$.
- c) A velocidade média e a aceleração média no intervalo [0; 13 s]

28°) (Teste ISTM-2017) Num parque de diversões, uma pessoa pode ganhar uma girafa de peluche se conseguir encaixar uma moeda num prato pequeno. O prato está sobre uma prateleira acima do ponto em que a pessoa deixa a mão, a uma distância horizontal de 2,1 m. Uma pessoa lança a moeda com uma velocidade de 6,4 m/s formando um ângulo de 60° acima da horizontal, encaixando a moeda no prato.

- a) Qual é a altura da prateleira, em relação ao nível da mão?
- b) Qual foi a altura máxima, em relação ao nível da mão, atingida pela moeda?

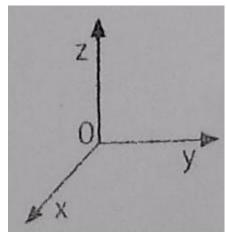
29°) (Teste ISTM-2017) Um bloco A, de massa 1,0 kg foi lançada com velocidade de 4 m/s contra um bloco B, de massa 0,5 kg, que estava em repouso, seguindo juntos após o choque e subindo um plano inclinado de 37º (ver figura) Despreze as dimensões dos blocos.

- a) Na ausência de atrito, qual é a velocidade com que os dois blocos iniciam a subida do plano inclinado?
- b) Na ausência de atrito, qual é a distância que os dois blocos percorrem ao longo do plano inclinado até pararem? (caso não tenha resolvido a alínea (a), considere o resultado da mesma sendo v = 3 m/s)
- c) Havendo atrito no plano inclinado, e se os blocos se deslocam de 30 cm ao longo desse plano, determine o valor da força de atrito.

30°) (Teste ISTM-2017) Uma partícula com a carga $+3.0 \times 10^{-11}$ C desloca-se com velocidade $\vec{v} = 3.0 \times 10^6 \, \text{eV} (m/s)$, numa região do espaço onde existe um campo magnético $\vec{B} = 2.0 \times 10^{-2} \text{ cm}(T)$ e um campo eléctrico $\vec{E} = 4.0 \times 10^{3} \text{ cm}(V/V)$ m). Determine a força electromagnética (módulo ,direcção e sentido) qua actua sobre a partícula.

Dados:

$$q = +3.0 \times 10^{-11} C$$

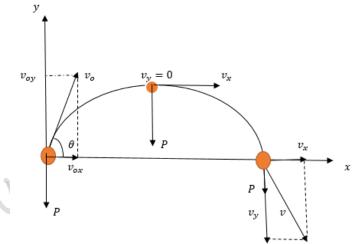

$$\vec{v} = 3.0 \times 10^6_{\,\overline{ey}}(m/s)$$

$$\vec{B} = 2.0 \times 10^{-2}_{\vec{ex}}(T)$$

$$\vec{E} = 4.0 \times 10^3_{\vec{e}\vec{z}} (V/m)$$

$$\vec{B} \perp \vec{v}, 90^{\circ}$$
 $F_{Em} = ?$

$$F_{Em} = ?$$



- 31°) (Teste ISTM-2017) Um projéctil é lançado obliquamente para cima com velocidade v_0 segundo um ângulo θ com a horizontal. Despreza-se a resistência do ar. Classifique as afirmações seguintes com verdadeiras (V) ou falsas (F):
- a) A componente horizontal da velocidade mantém-se constante durante o movimento__V___
- b) A aceleração diminui na subida e aumenta na descida__V__
- c) A força que actua no projéctil é sempre perpendicular a velocidade_F___

- d) A velocidade é nula no ponto mais alto da trajectória__F__
- e) Quando o projéctil atinge a altura máxima, o raio de curvatura da tragectória é $\frac{v_o^2 \cos^2 \theta}{a} \underline{\hspace{1cm}} V \underline{\hspace{1cm}}$

Jutificação:

- a) A componente horizontal da velocidade mantém-se constante durante o movimento, uma vez que no eixo x o movimento é classificado como rectilíneo e uniforme;
- b) Na subida o movimento é classificado como retardado porque a aceleração diminui (o projéctil desloca-se em sentido contrário da aceleração de gravidade: v>0 e g<0) e na descida é classificado como acelerado porque aumenta (o projétil desloca-se no mesmo sentido que a aceleração de gravidade);
- c) Como despreza-se a resistência do ar, a única força que actua é o peso P do corpo que está sempre dirigida para o centro da terra, ela é perpendicular apenas a componente horizontal da velocidade;

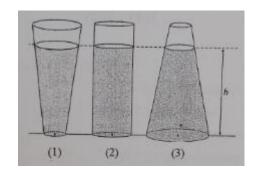
- d) Somente a componente vertical $(v_y = 0)$ da velocidade é nula no ponto mais alto, como é ilustrado na figura abaixo;
- e) A aceleração centrípeta é dada por: $a_c = \frac{v^2}{R}$

No ponto mais alto da tragecória a velocidade resultante é: $v^2 = v_x^2 + v_y^2$

Neste mesmo ponto $v_y = 0$, $v^2 = v_x^2$, logo temos; $a_c = \frac{v_x^2}{R}$

Além do mais, como o corpo é acelerado pela gravidade, no ponto mais alto da trajectória a resultante da aceleração é centrípeta ou seja: $a_c = g$, sabe-se que:

 $v_x = v_o \cos\theta$, relacionando com a equação acima, vem:


$$g = \frac{v_0^2 \cos^2 \theta}{R} \rightarrow R = \frac{v_0^2 \cos^2 \theta}{g}$$

32º) (**Teste ISTM-2017**) Os recipientes representados são abertos e contém mesmo líquido.

classifique as afirmações seguintes como verdadeiras (V) ou falsas (F):

ACADEMIA CLÍNICA DO SABER & DEPARTAMENTO DE SUPERAÇÃO ACADÉMICO

- a) A pressão exercida pelos líquidos no fundo do recipiente é $p_3 > p_2 > p_1$ ___F___
- b) A força de pressão no fundo dos recipientes é: $F_1 > F_2 > F_3$ ____F___
- c) A pressão exercida pelos líquidos no fundo do recipiente é $p_1 = p_2 = p_3$ _____V____
- d) A força de pressão no fundo dos recipientes é: $F_3 > F_2 > F_1$ ____V___

Resolução:

1°) Vamos encontrar a relação das pressões nos três recipientes.

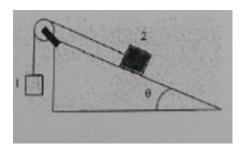
Se os recipientes contém o mesmo liquído que estão a um mesmo nível, pressão exercida pelos liquídos no fundo do recipinte é a mesma, pelo princípio de Pascal, ou seja; $p_1 = p_2 = p_3$.

2º) Vamos encontrar a das forças de pressão.

A força de pressão é determinada pela relação: $F = P \times A$

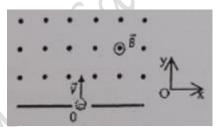
P é a pressão no fundo do recipiente e

A é a secção transversal dos recipintes


Como a pressão no fundo do recipente é a mesma para os três recipinetes, a força de pressão dependera apenas da secção transversal dos vasos.

É fácil notar pela figura que a seccçã transversal da base do 3° recipiente é o maior, e o menor dos três recipientes é a secção do 1°. Sendo assim teremos:

 $A_1 < A_2 < A_3$ e consequentemente teremos para as forças de pressão:


$$F_3 > F_2 > F_1$$

Elaborado por: Pedro Rafael Afonso-Luanda/cacuaco/címangola/ 938979070 Página 11 33°) (Teste ISTM-2017) Dois objectos ,1 e 2, estão ligados por uma corda, que passa sem atrito por uma roldana de massa desprezível (ver figura). A massa do corpo 1 é $m_1 = 10~kg$. O bloco de massa m_2 está sobre um plano, inclinado de um ângulo $\theta = 30$ °, sendo os coeficientes de atrito estático e cinético entre o bloco e o plano inclinado iguais a $\mu_e = 0.3~$ e $\mu_c = 0.2~$ respectivamente. Determine :

- a) Faça o diagrama de corpo livre para cada um dos corpos (suponha que o sistema tende a deslocar-se para a direita-1 a subir , 2 a descer.
- b) Determine a massa que o corpo 2 deve ter para por o sistema em movimento.
- c) Determine a aceleração do sistema $m_2 = 60 \ kg$.

34°) (**Teste ISTM-2017**) Um electão é lançado pelo orifício O de um anteparo, com velocidade $\vec{v} = 3.0 \times 10^6 \frac{1}{e\vec{y}} (m/s)$, perpendicular a um campo magnético uniforme $\vec{B} = 4.0 \times 10^{-3} \frac{1}{e\vec{z}} (T)$. Determine:

- a) As caracterísiticas das forças magnéticas (módulo , direccção, e sentido) que actua sobre o electrão ;
- b) A que distância do ponto O o electrão bate no anteparo.
- c) O intervalo de tempo que decorre desde o instante em que o electrão penetra no campo magnético até atingir o ponto referido na alínea anterior.

35°) (**Teste ISTM-2017**) Dois projéctis A e B, de igual massa , são lançados horizontalmente, do mesmo lugar, a uma altura h dos solo. A velocidade de lançamento de A é maior do que a de B. Classifique as afirmações seguintes como verdadeiras (V) ou falsas (F).

- a) O alcance de A é maior do que o alcance de B____V___
- b) Os dois projéctis atingem o solo com velocidades iguais.___F___.
- c) O tempo de queda de A é igual ao de B.___V___
- d) A aceleração de A é igual à aceleração de B.___V___
- e) A energia mecância de A é igual à energia mecância de B. __F___

Justificação das afirmações:

$$v_A > v_B$$

a) O alcance é determinado pela relação: $x_A = v_A \sqrt{\frac{2h}{g}}$ e $x_B = v_B \sqrt{\frac{2h}{g}}$

Se $v_A > v_B \rightarrow x_A > x_B$, o que quer dizer que o projéctil A tem um alcance mairo que o proj

b) A velocidade de queda é determinada pela relação:

$$v_{Aq} = \sqrt{{v_A}^2 + g^2 t^2}$$
 e $v_{Bq} = \sqrt{{v_B}^2 + g^2 t^2}$

 v_{Aq} Velocidade com que o projéctil A chega ao solo

 $\boldsymbol{v_{Bq}}$ Velocidade com que o projéctil B chega ao solo

Se $v_A > v_B \to v_{Aq} > v_{Bq}$, o que quer dizer que a velocidade com A chega ao solo é maior do que B.

c) O tempo de queda no lançamento horizontal é determinado pela relação:

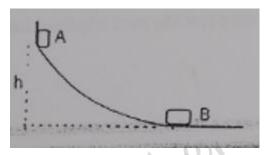
$$t_A = \sqrt{\frac{2h}{g}} \quad \text{e } t_B = \sqrt{\frac{2h}{g}} \; \; ;$$
 como os corpos são lançados da mesma altura h ,

 $t_A = t_B$, o que quer dizer que o tempo de queda de A é igual ao de B.

- d) Os dois corpos são acelerados pela gravidade, logo terão a mesma aceleração.
- e) A energia mecância é a soma das energias potenciais e cinéticas. Como os corpos são lançados de uma mesma altura eles terão no início a mesma energia potencial, mas a velocidade com que chegam no solo é diferente, logo, eles terão energia cinética diferente ao atingirem o solo. Assim : $E_{MA} \neq E_{MB}$.

36°) (**Teste ISTM-2017**) Um corpo descreve um movimento circular com velocidade de módulo constante. Nestas condições, pode afirmar-se que (selecione as afirmações verdadeiras):

a)	A resultante	das forças	que actuam	no corpo tem	, apenas,	componente
	tangencial	F				


- b) A resultante das forças que actuam no corpo é nula.__F___.
- c) A velocidade é paralela a aceleração.___F__
- d) A velocidade angular tem módulo e direcção constante._____
- e) A aceleração do movimento é, em cada instante, perpendicular à tangente à trajéctória.___V___

Justificação das respostas:

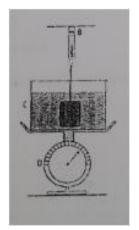
- a) Nos movimentos circulares uniformes, o módulo da velocidade vectorial não varia e, portanto a aceleração tangencial é nula, sendo assim a resultante que actuam no corpo tem apenas componente centrípeta.
- No movimento circular a velocidade pode variar em módulo ou em direcção, mesmo que a velocidade permaneça constante a resultante das forças não será nula.
- c) Como a aceleração resultante é centrípeta e está sempre direcionada para o centro da tragectória, a velocidade não será paralela a aceleração.
- d) Como o movimento é uniforme, a velocidade angular permanecerá constante.

e) No movimento circular uniforme a aceleração resultante é a própria aceleração centrípeta que é perpendicular à tangente à trajéctória em cada instante.

37°) (Teste ISTM-2017) Um bloco A de massa 5,0 kg, partindo do repouso, é largado numa calha de altura h (ver figura), e atinge a base da calha com uma energia de 150 J. Aí colide com um outro bloco B de 10 kg, seguindo juntos após o choque.

Considerando que o atrito é desprezável na

parte curva da calha e que o coeficiente de atrito cinético na parte plana é μ_c =0,25. Determine :


- a) A altura de que é largado o bloco A;
- b) A velocidade dos dois blocos imediatamente após o choque;
- c) A que distância do ponto de choque os dois blocos vão parar.

38°)(**Teste ISTM-2017**) Um corpo A, de volume 120 cm³, está suspenso de uma

balança de um dinamómetro , B, e mergulhado na água contida num copo C, que está sobre o prato de outra balança – dinamómetro,D. Tanto a balança superior como a inferior indicam 15 N. A massa do copo C é 80 g. Determine:

- a) A massa volúmica da substância de que é feito o corpo A;
- b) O volume de água contida no copo C.;

COGBM

