

República de Moçambique Ministério da Educação e Desenvolvimento Humano Instituto Nacional de Exames, Certificação e Equivalências

ES2 / 2023 12ª Classe

Exame Final de Matemática

1ª Chamada 120 Minutos

Este exame contém quarenta (40) perguntas com 4 alternativas de resposta cada uma. \$#_ Escolha a alternativa correcta e RISQUE a letra correspondente na sua folha de respostas.

MAT-1-11-152-0561-1185

1. Sendo $x \in \mathbb{R}$, qual das opções é correcta?

$$\mathbf{A}'|x| = \begin{cases} -x & se \ x < 0 \\ x & se \ x \ge 0 \end{cases} \quad \mathbf{B} |x| = \begin{cases} x & se \ x > 0 \\ -x & se \ x \ge 0 \end{cases} \quad \mathbf{C} |x| = \begin{cases} -x & se \ x \le 0 \\ x & se \ x > 0 \end{cases} \quad \mathbf{D} |x| = \begin{cases} x & se \ x > 0 \\ -x & se \ x \ge 0 \end{cases}$$

$$\mathbf{B} |x| = \begin{cases} x \text{ se } x > 0 \\ -x \text{ se } x \ge 0 \end{cases}$$

$$\mathbf{C} |x| = \begin{cases} -x & \text{se } x \le 0 \\ x & \text{se } x > 0 \end{cases}$$

$$\mathbf{D} |x| = \begin{cases} x \text{ se } x > 0 \\ -x \text{ se } x \ge 0 \end{cases}$$

2. Na expressão |x-3|=5, x representa geometricamente o conjunto de números que se encontram a uma distância de ...

A 3 unidades de 5.

C 5 unidades da origem.

(B) 5 unidades de 3.

D 3 unidade da origem.

3. Qual é a solução da equação |x-5|=7?

A
$$x = \{2; 12\}$$

B
$$x = \{-12; 2\}$$

B
$$x = \{-12; 2\}$$
 D $x = \{-2; -12\}$

D
$$x = \{-2, -12\}$$

4. Qual é a distância entre os pontos das abcissas - 5 e - 1?

 \mathbf{A} 10

C 6

D 4

Qual é o valor de $|5+\sqrt{8}|$? 5.

A
$$-5-\sqrt{8}$$

B
$$-5+\sqrt{8}$$

C
$$5 - \sqrt{8}$$

D
$$5+\sqrt{8}$$

Que valores k_0 pode tomar para que a equação |x-a|=2+k tenha solução? 6.

A
$$k \in]-\infty;2]$$

A
$$k \in]-\infty;2]$$
 B $k \in [-2;+\infty[$ **C** $k \in]-\infty;a]$ **D** $k \in [-a;+\infty[$

$$\mathbb{C} \ k \in]-\infty;a]$$

D
$$k \in [-a; +\infty]$$

Qual é a soma dos coeficientes binomiais no desenvolvimento de $(a+b)^6$? 7.

A 64

B 32

C 16

D 8

Quantos elementos terá o espaço amostral de uma experiência que consiste em lançar três dados de cores 8. diferentes e registar os resultados obtidos nas faces superiores?

A 124

D 648

Uma urna contém uma bola azul, uma bola branca e uma bola vermelha. Durante a extracção, consideram-se os 9. acontecimentos:

M: "Sair bola azul", N: "Sair bola azul que não seja azul", O: "Sair bola reta" e P: "Sair bola azul, branca ou vermelha". Qual dos seguintes acontecimentos é verdadeiro?

A M - Impossível

B O – Composto

P - Certo

D N - Elementar

2023/12ª Classe/Exame de Matemática/1ª Chamada

10.	Uma aluna que joga basquetebol faz dois lançamentos ao cesto, designados por: A: "Encestar no 1º lançamento" e B: "Encestar no 2º lançamento". Qual é a tradução, em função de A e B do acontecimento, Encestar em pelo menos um dos lançamentos?			
	acontecimento, Encestar e	em pelo menos um dos la $B \cap A \cap B$	C A∪B	$\mathbf{p} \ \mathbf{A} \cap \overline{\mathbf{B}}$
	A ROB	DAMB		rados de 0000 a 3999?
11.	Quantos acontecimentos A 4001	elementares existem nos B 4000	bilhetes de lotaria numer C 3999	D 3998
12.	Quantas nalasses sam su	,	bter com a palavra UNIR	k, ficando as vogais sempre
Partition out out self-time so pour				
	juntas?			p 30
	A 12	B 18	¢ 24	A dietalla i
13.	Numa corrida com 12 nas	rticinantes não havendo	empates, de quantas man	eiras se podem distribuir
	Numa corrida com 12 participantes, não havendo empates, de quantas maneiras se podem distribui as medalhas de ouro, prata e bronze?			
	A) 1320	B 1230	C 980	D 890
		D 1230		quantas noites se formam
14.	equipas diferentes?			
	№ 210	B 140	C 90	D 50
				15?
15.				
	$\mathbf{A} \frac{7}{9}$	$\mathbf{B} = \frac{5}{9}$	$\mathcal{C}^{\prime} \frac{3}{9}$	$\mathbf{D} = \frac{1}{8}$
	$\frac{\mathbf{A}}{8}$	$\mathbf{B} = \frac{8}{8}$, c 8	8
16.	Uma sucessão u_n , $n \in \mathbb{N}$, diz-se infinitamente grande negativo se			
	$\mathbf{A} \lim_{n \to \infty} u_n = \infty$	$\mathbf{B} \lim_{n\to\infty} u_n = 0$	$\mathbf{C} \lim u_{-} = a$	$(\mathbf{D}) \lim_{n \to \infty} u_n = -\infty$
	$n \to \infty$	$n \to \infty$	$n \rightarrow \infty$ "	$n \to \infty$
17.	Considere uma sucessão $u_n, n \in \mathbb{N}$. Qual das sucessões seguintes é convergente?			
	$\mathbf{A} u_n = -2^n$	$\mathbf{B} \ u_n = n^2$		$\mathbf{D} u_n = 2n$
	$\mathbf{A} \mathbf{u}_n = -2$	$\mathbf{D} u_n - u_n$	$u_n - 3$	2 2
18.	A soma de n termos de uma Progressão Geométrica é calculada pela fórmula			
10.				
	$\mathbf{A} S_n = \frac{a_1 \left(1 + q^n \right)}{q + 1}$	$\mathbf{B} S_n = \frac{a_1 \left(1 - q^n \right)}{q + 1}$	$C = S = \frac{a_1(1-q^n)}{1-q^n}$	$S_n = \frac{a_1(1-q^n)}{1-q}$
	$A = \frac{1}{q+1}$	q+1	$C B_n = \frac{q-1}{q-1}$	$S_n = \frac{1-a}{1-a}$
	•	•	•	- 4
19.	9. Qual é o valor de $\lim \frac{3(5-n)^2}{2-n^2}$?			
			C 1	
	X − 3	B -1	C 1	D 5
		6n		
20.	Na sucessão de termo geral $a_n = \frac{6n}{n+5}$, qual é o termo de ordem 3?			
	$A = \frac{11}{6}$	B $\frac{18}{15}$	$C \frac{9}{8}$	$\mathcal{D} \frac{9}{4}$
	6	13	8	4
21.	Qual é o termo geral de uma progressão aritmética u_n , $n \in \mathbb{N}$, em que $a_1 = 3$ e $d = \frac{1}{2}$?			
	5 n	_ 5 n	5 n	£
	A $u_n = \frac{5}{2} - \frac{n}{2}$	$\mathbf{B} u_n = \frac{\Delta}{2} - \frac{\Delta}{2}$	$\mathbf{C} u_n = \frac{5}{4} + \frac{n}{2}$	$u_{n} = \frac{3}{n} + \frac{n}{n}$
	2 Z	T 2	4 2	" 2 2

2023/12ª Classe/Exame de Matemática/1ª Chamada

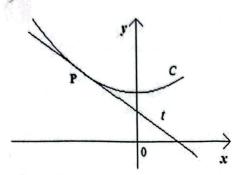
 $\frac{1}{8}$, $\frac{1}{9}$, $\frac{1}{10}$, $\frac{1}{11}$, ... são os primeiros termos consecutivos de uma sucessão de números reais, cujo termo geral é ... B $u_n = \frac{1}{2n+6}$ C $u_n = \frac{1}{9-n}$ D $u_n = \frac{1}{4n+4}$ $Au_n = \frac{1}{n+7}$ Determinado município decide colocar postes de iluminação ao longo de uma estrada rectilínea que inicia 23. numa praça central e termina numa quinta localizada numa zona rural. Como a praça já possui iluminação, o primeiro poste será colocado a 80 metros dela, o segundo a 100 metros, o terceiro a 120 metros, e assim sucessivamente, mantendo-se sempre uma distância de 20 metros entre os postes, até que o último poste seja colocado a uma distância de 1580 metros da praça. Qual será o maior valor, em meticais, a ser gasto pelo Município com a colocação dos postes, se cada um custar 5000 Meticais? **B**) 380.000 A 320.000 C 420.000 **D** 460.000 Qual é o 10º termo de uma Progressão Geométrica, cujo primeiro termo é 1 e a razão é -2? C - 256D - 512A - 64O Artur foi contratado por 6 meses como auxiliar de vendas num parque de viaturas. Foi-lhe informado que 25. receberia, no primeiro mês, 2700 meticais e que nos meses seguintes teria um aumento de 400 meticais. Ouanto é que o Artur receberá, em meticais, até ao final do seu contrato de trabalho? (B) 22200 C 22500 **A** 22000 De uma progressão Geométrica monótona crescente sabe-se que o quarto termo é igual a 32 e o oitavo 26. termo é igual a 8192. Qual é o terceiro termo da sucessão? **B** 32 A 64 Se decidires guardar um dinheiro obedecendo a uma progressão geométrica de razão 2, considerando 27. que no primeiro mês irás poupar 1 MT, qual será o valor total, em meticais, guardado até ao sexto mês? **B** 29,5 A 16,5 Qual dos seguintes casos NÃO representa uma indeterminação? 28. $\mathbf{C} \propto \times 0$ **A** ∞ −1 Seja f uma função real de variável real e a um ponto de acumulação do seu domínio. Diz-se que f é contínua 29. no ponto a do seu domínio se e só se, existe: C $\lim_{x \to a} f(x)$ e $\lim_{x \to a} f(x) \neq f(a)$ $\bigwedge_{x \to a} \lim_{x \to a} f(x) e \lim_{x \to a} f(x) = f(a)$ **B** $\lim_{x\to a} f(x)$ ou $\lim_{x\to a} f(x) \neq f(a)$ Qual deve ser o valor de a, de forma que $f(x) = \begin{cases} x+1 & se & x \le 1 \\ 2-ax^2 & se & x > 1 \end{cases}$ seja contínua? 30. \mathbf{D}^2 31. Qual é o valor de $\lim_{x \to -\infty} (4-7x)$? $\mathbf{p}'+\infty$ \mathbf{C} 7

C 8

32. Qual é o valor de $\lim_{x\to 2} \frac{x^2-4}{x-2}$?

3/4

 $\mathbf{D} \infty$


- Qual é o valor de $\lim_{x\to +\infty} (\sqrt{x-1} \sqrt{x})$?

B 1

C 2

D 4

34.

Considere a recta t tangente no ponto P à curva C que representa parte do gráfico de uma função y = f(x). Sendo m o declive da recta t, então, pode-se afirmar que...

A
$$m=1$$

$$e^m < 0$$

$$\mathbf{B} \quad m > 0$$

$$\mathbf{D} m = 0$$

A definição correcta da derivada da função f no ponto x = -2 é: 35.

A
$$f'(-2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{h}$$

C
$$f'(-2) = \lim_{h \to 0} \frac{f(-2+h) + f(2)}{h}$$

B
$$f'(-2) = \lim_{h \to 0} \frac{f(-2+h) + f(-2)}{h}$$

D
$$f'(-2) = \lim_{h \to 0} \frac{f(2-h) + f(2)}{h}$$

Qual é a primeira derivada de $f(x) = x^5 - 2x^3 + x$?

A
$$f'(x) = 5x^5 + 6x^3 + 1$$

B
$$f'(x) = 5x^5 + 6x^3 -$$

C
$$f'(x) = 5x^4 + 6x^2 - 1$$

A
$$f'(x) = 5x^5 + 6x^3 + 1$$
 B $f'(x) = 5x^5 + 6x^3 - 1$ **C** $f'(x) = 5x^4 + 6x^2 - 1$ **D** $f'(x) = 5x^4 + 6x^2 + 1$

Qual é a primeira derivada de f(x)=(x+2)(x+5)?

$$f'(x) = 2x + 7$$

B
$$f'(x) = 5x + 2$$

$$f'(x) = 2x + 5$$

$$f'(x) = 2x + 7$$
 $f'(x) = 5x + 2$ $f'(x) = 2x + 5$ $f'(x) = 5x + 7$

Qual é a primeira derivada de $g(x) = \frac{5+x}{x+2}$?

$$A'g'(x) = -\frac{3}{(x+2)^2}$$

B
$$g'(x) = -\frac{5}{(x+2)^2}$$

$$C g'(x) = \frac{3}{(x-2)^2}$$

$$\mathbf{A}' g'(x) = -\frac{3}{(x+2)^2} \qquad \mathbf{B} g'(x) = -\frac{5}{(x+2)^2} \qquad \mathbf{C} g'(x) = \frac{3}{(x-2)^2} \qquad \mathbf{D} g'(x) = \frac{5}{(x-2)^2}$$

A segunda derivada de $f(x) = x^3(x+a)^4$ é um polinómio de grau...

Para que valores de x a função $f(x) = \frac{x-6}{(x-9)(x+2)} \frac{NAO}{x}$ admite derivada?

A
$$x = 9 \lor x = 6$$

B
$$x = 9 \lor x = -2$$
 C $x = 2 \lor x = 9$

$$\mathbf{C} \quad x = 2 \lor x = 9$$

D
$$x = 6 \lor x = -9$$