

Instituto Nacional de Exames, Certificação e Equivalências

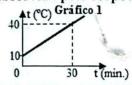
ES2 / 2025 12ª Classe

Exame Final de Física

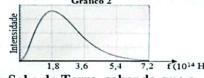
1^a Chamada 120 Minutos

):>

148949


Este exame contém quarenta (40) perguntas com quatro (4) alternativas de resposta cada uma. Escolha a alternativa correcta e *RISQUE* a letra correspondente na sua folha de respostas.

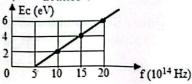
Fis-3-1-06-0626-0719-24


- 1. Um rapaz, a passear de carro pela cidade a escutar rádio, percebe que a sua estação de rádio preferida tem seu sinal de transmissão sobreposto pela transmissão de uma rádio pirata. Considerando a situação apresentada, a estação de rádio pirata interfere no sinal da estação de rádio do centro da cidade devido a...
 - A diferença de intensidade entre as fontes emissoras de onda.
 - B maior amplitude da radiação emitida pela estação do centro.
 - C menor potência de transmissão das ondas da emissora pirata.
 - D semelhança dos comprimentos de onda das radiações emitidas.
- 2. No verão, é aconselhável usar roupa clara porque...
 - A absorve bem a radiação térmica.

C não emite radiação térmica.

- B reflete bem a radiação térmica.
- D a radiação torna clara a pessoa.
- 3. O gráfico 1 mostra como a temperatura varia com o tempo quando um corpo recebe de uma fonte de potência 200 cal/min. Qual é, em calorias, a quantidade de calor absorvida pelo corpo?
 - A 2000
 - **B** 5000
 - C 6000
 - **D** 8000

- 4. O gráfico 2 ilustra a intensidade das ondas electromagnéticas emitidas por um corpo negro em função da frequência. Qual é, em Kelvin, a temperatura do corpo negro? (b = 3.10⁻³m.K; C = 3.10⁸m/s)
 - A 1800
 - B 2200
 - C 3600
 - **D** 4500


- Qual é a relação entre os comprimentos de onda máximos do Sol e da Terra, sabendo que a $T_{Sol} = 6000 \text{ K e } T_{Terra} = 300 \text{ K}$?
 - A 1/20
- **B** 1/10
- **C** 2

- \mathbf{D} 3
- 6. A energia necessária para remover um electrão do sódio é de 3,68.10⁻¹⁹J. Determine, em metros, o comprimento de onda limite para ocorrer o efeito fotoeléctrico. (h = 6,63.10⁻³⁴J.s;c = 3.10⁸m/s)
 - A 3,2.10⁻⁷
- **B** 4,6.10⁻⁷
- C 5,4.10⁻⁷
- D 6.5.10⁻⁷
- 7. O gráfico 3 relaciona o potencial de paragem em função da frequência da radiação incidente sobre uma placa metálica. Com base no gráfico, qual é, em eV.s, o valor da constante de Planck?
 - A 3,2.10⁻¹⁵
 - B 4,1.10⁻¹⁵
 - C 5,2.10⁻¹⁵
 - D 7.1.10⁻¹⁵

- U_p (V) Grafico 3 1,00 0,55 -----4,66 6,00 7,10 f (10¹⁴ Hz)
- O gráfico 4 relaciona a energia cinética em função da frequência da radiação incidente sobre uma placa metálica. Qual é, em metros, o comprimento de onda correspondente à radiação incidente cuja frequência é chamada frequência limite? (c = 3.108 m/s)

 Gráfico 4
 - A 8.10⁻⁷
 - B 7.10⁻⁷
 - $C 6.10^{-7}$
 - $D 5.10^{-7}$

Biblioteca de Livros e Exames em PDF

MozEstua.com

Exames e Editais em PDF AQUI

Exames.MozEstuda.com

Livros e Módulos Escolares em PDF <u>AQUI</u>

<u>Livros.MozEstuda.com</u>

Livros Diversos em PDF AQUI

Biblioteca.MozEstuda.com

Planos & Programas de Ensino AQUI

Educador.MozEst uda.com

Contacto: <u>wa.me/258 867131324</u>

9.	 Qual das propriedades é dos raios X? A Emulsionam chapas fotográficas B São invisíveis com comprimento de onda entre C Sofrem deflexão em campos eléctricos e magr D Sofrem refração nos corpos que atravessam 		
10.	Num tubo de raios X, os raios X resultam da colis colocado no Qual das alternativas, seque A Átomos, raios catódicos, cátodo B Protões, átomos, cátodo	com os com os encialmente, preenche co C Protões, átomos, ând D Raios catódicos, átom	rrectamente as lacunas? do
11.	Um átomo de hidrogénio está em um estado excita uma transição para o estado n=1, com energia E ₁ aproximadamente, em Hz, a frequência da radi A 1,54.10 ¹⁵ B 2,0.10 ¹⁵	= -13,6 eV, e um fotão é	emitido. Qual é,
12.	O gráfico 5 mostra os níveis de energia do átomo o necessária para a transição do electrão do nível A 10,2 B 12,1 C 13,6 D 14,8	de hidrogénio. Qual é, em n = 3 para n = 1? Grá -0.3 -0.5 -0.5 -0.5 -0.3 -1.5 -3.4 -13.6	i electrão-Volt, a energia fico 5 == \$ 5 3 2 1
13.	O gráfico 6 representa o espectro de raios X. Qua (1Å = 10 ⁻¹⁰ m) A 2.10 ⁻¹¹ B 6.10 ⁻¹¹ C 2.10 ⁻¹⁰ D 6.10 ⁻¹⁰	G	imento de onda mínimo? ráfico 6 K_{β} 0.6 1.0 1.4 λ λ
14.	Um átomo que apresenta 40 electrões e 65 neutr A 25. B 40.	rões tem o número de pr C 65.	
15.	O elemento $^{42}_{20}$ X é isótopo do elemento Y, que tem que Z tem 18 protões, qual é, o número de mass A 42, 42, 42 B 42, 40, 40		
16.	Qual das seguintes alternativas representa corr A $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{144}_{55}Cs + ^{90}_{37}Rb + 3(^{1}_{0}n)$ B $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{235}_{56}Ba + ^{235}_{36}Kr$	ectamente a reacção de f $C_{92}^{235}U + {}_{0}^{1}n \rightarrow {}_{92}^{238}U + 3$ $D_{92}^{235}U + {}_{0}^{1}n \rightarrow {}_{56}^{140}Cs +$	$S({0 \atop 0}n)$
17.	Qual das seguintes reacções nucleares represent $\mathbf{A}^{26}_{13}\mathrm{Al} + {}^{0}_{-1}\mathrm{e} \rightarrow {}^{26}_{12}\mathrm{Mg}$ $\mathbf{B}^{10}_{5}\mathrm{B} + {}^{4}_{2}\mathrm{He} \rightarrow {}^{14}_{7}\mathrm{N}$	_	$D_{92}^{238}U \rightarrow {}_{-1}^{0}e + {}_{93}^{238}Np$
18.	Quando um átomo de Bismuto-212 ($^{212}_{83}$ Bi) sofre de um átomo de Polónio-212 ($^{212}_{84}$ Po) ou de Correctamente as partículas emitidas durante es A $^4_2\alpha$ e $^0_1\beta$ B $^4_2\alpha$ e $^0_0\gamma$	Tálio-208 (²⁰⁸ 1Tl). Qual	das alternativas indica
19.	Na fissão de um dado núcleo, o defeito de massa é se liberta durante esse processo? (1 uma = 931 l A 436,1 B 3681,2		é, em Mev, a energia que D 1643,5
20.	O período de semidesintegração do isótopo 226 Ra actividade de uma amostra desse isótopo se redu A 2310 anos B 4620 anos	é igual a 2310 anos. D	epois de quanto tempo a

21.			2025/12 ^a Classe/Exam				
41.	Ao estudar a desintegração radioactiva de um elemento, obteve-se um período de semidesintegração de 4 h. Qual é, a fracção de nuclídeos por se desintegrar decorridos 16 h?						
	ue 4 n. Qual e, a frace	ção de nuclídeos por	se desintegrar decorr	idos 16 h?			
22.	A 1/4 O paríodo do samidaci	B 1/8	C 1/16	D 1/32			
	média dos átomos de		erial radioactivo é de 17 0.7)	7,5 dias. Quai e, em c	lias, a vida		
	A 5	B 8	C 15	D 25			
23.	O gráfico 7 mostra o p	rocesso de desintegra	ção de um isótopo. De	pois de quanto temp	o a		
		po radioactivo se re	duz 75% da actividad	le inicial?			
	A 10 anos		1000 A	(Bq) Gráfico 7			
	B 20 anos		500				
	C 30 anos D 40 anos		250				
24.		20 mm d - 2 1	0		t (anos)		
24.	raio com uma velocio		e água que escoa atrav = 3 14)	ves de um tubo de 0,	16 am ae		
	A 3,2	B 6,4	C 20,1	D 40,2			
25.	Qual das afirmações	caracteriza correcta	mente um fluido ideal	?			
	A É compressível						
	B É viscoso		- 1-1-1				
		é constante no decorre					
		onservação da massa e			-		
26.		Considere duas regiões distintas do leito de um rio: uma larga R, com 200 m ² de área na secção					
	transversal, e velocidade média da água 1 m/s, e uma outra S, com 40 m ² de área na secção transversal. Qual é, em m ³ /s, a vazão do rio na secção estreita?						
	A 100	B 200	C 400	D 600			
27					2/2 2		
27.	Um líquido de densidade 800 kg/m^3 escoa pelo tubo e apresenta no ponto 1, velocidade $v_1 = 2 \text{ m/s}$ e						
	pressão $p_1 = 4.10^4 Pa$. De acordo com a figura, qual é, em Pa, a pressão do líquido no ponto 2?						
	$A 2,4.10^4$	$\mathbf{C} \ 4,6.10^4$	(1)	(2)	$v_2 = 3 \text{ m/s}$		
	B $3.8.10^4$	D $5,8.10^4$	$v_1 = 2$	m/s	_		
28.	As moléculas que car		iente um gas ideai				
	R movimentam-se re	A são grandes e têm dimensões pontuais.B movimentam-se rapidamente e aleatoriamente.					
	C sofrem colisões po	erfeitamente inelástica	S.				
		em-se excepto durante					
29.	Um recipiente de 20 l	de capacidade com 4	moles de amónia (NH ₃)), é transportado da N	Voruega, sob		
	temperatura de 283 K, para o Egipto, a 313 K. Qual é, em atm, a pressão exercida pela amónia a						
	283 K no Egipto? ($R = 0.082$ atm. $\ell/mol.K$)						
	A 2,5	B 4,6	C 5,8	D 6,8			
30.	A pressão total do ar n	o interior de um pneu	era de 2,50 atm, quand	lo a temperatura do p	neu era de		
50.	300 K. Depois de ter rodado um certo tempo com este pneu, mediu-se novamente sua pressão e						
	verificou-se que era de 3,0 atm. Supondo a variação de volume desprezível do pneu, determine em						
	Kelvin a sua nova ter						
	A 150	B 272,7	C 360	D 423,8			
0.1			a igatémica conforma	o gráfico 8 Qual é, e	m lituas a		
31.	Certa massa de gás ide		o isotermica conforme	o granco o. Quan e, e	em mtros, o		
31.	volume ocupado pelo						
31.	volume ocupado pelo A 126			atm)♠ Gráfico			
31.	volume ocupado pelo A 126 B 112			atm) Gráfico			
31.	volume ocupado pelo A 126			atm)♠ Gráfico			

- 32. A figura representa o gráfico p-V de um gás, suposto ideal, que sofre primeiramente um processo isobárico (M→N), e depois um processo isovolumétrico (N→S). Qual é, em Joules, o trabalho realizado pelo gás ao final do processo MNS?
 - $A 4.10^5$
 - $\mathbf{B} \ 8.10^5$
 - $C 16.10^5$
 - $D 32.10^5$

- Numa transformação isobárica, um gás realizou um trabalho de 2 J sob pressão de 4.10⁵ N/m². Se após a expansão, o volume do gás é de 10.10⁻⁶ m³, qual é, em m³, o seu volume inicial?

 A 3.10⁻⁶

 B 5.10⁻⁶

 C 7.10⁻⁶

 D 8.10⁻⁶
- 34. Um gás ideal sofre uma transformação termodinâmica e absorve 50 cal de energia na forma de calor e expande-se realizando um trabalho de 70 J. Qual é, em Joules, a variação da energia interna do gás? (1 cal = 4,2 J)
 - A -140
- **B** -120
- C 120
- **D** 140
- 35. O gráfico 10 representa as transformações sofridas por um gás. Qual é, em Joules, o calor recebido pelo gás ao final do processo XYZ?
 - $A 4.10^6$
 - $\mathbf{B} \ 6.10^6$
 - $C 12.10^6$
 - $D 24.10^6$

- p (10⁵ N/m²)

 8

 Cráfico 10

 X

 Y

 2

 3

 8

 V (m³)
- 36. O que acontecerá com o período de oscilação de um relógio de pêndulo que teve o comprimento do seu fio diminuído?
 - A Aumentará

C Diminuirá

B Aumentará três vezes

- D Diminuirá três vezes
- 37. O gráfico 11 representa a elongação em função do tempo de um oscilador. Qual é, em rad/s, o valor da velocidade angular do oscilador?
 - $\mathbf{A} \ \frac{\pi}{8}$

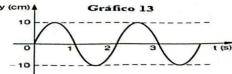
 $C \frac{\pi}{4}$

 $\mathbf{B} \frac{\pi}{3}$

 $\mathbf{D} \frac{\pi}{2}$

- 38. Um ponto material realiza um MHS de acordo com a seguinte equação a (t) = $-\frac{\pi^2}{16}$ sen(π t) no S.I.
 - Qual é, em m/s^2 , a aceleração do ponto material no instante t = 2s?
 - **A** 2

- $\mathbf{B} \ \frac{\pi^2}{8}$
- $C \frac{\pi^2}{16}$
- **D** 0
- 39. A velocidade de um ponto material em MHS é dada pelo gráfico 12. Qual é, em m/s, a velocidade máxima do ponto material?
 - A 4
 - B 8
 - $C 4\pi$
 - D 8π


- ν (m/s) Gráfico 12

 -4π

 2

 t(s)
- 40. Uma mola tem uma extremidade fixa e, preso à outra extremidade, um corpo de 0,5 kg, oscilando verticalmente. O gráfico 13, ilustra o diagrama da figura correspondente. Qual é, em N/m, o valor da constante elástica da mola? ($\pi = 3$)
 - A 1,5
 - B 4,5
 - C 6,0
 - D 8,0

0,5kg

Biblioteca de Livros e Exames em PDF

MozEstua.com

Exames e Editais em PDF <u>AQUI</u>

Exames.MozEstuda.com

Livros e Módulos Escolares em PDF AQUI

<u>Livros.MozEstuda.com</u>

Livros Diversos em PDF AQUI

Biblioteca.MozEstuda.com

Planos & Programas de Ensino <u>AQUI</u>

<u>Educador.MozEstuda.com</u>

Contacto: <u>wa.me/258 867131324</u>